

Getting Started
with the micro:bit
Coding and Making with the BBC’s
Open Development Board

Wolfram Donat

Copyright © 2017 Wolfram Donat
All rights reserved.

Printed in the United States of America.

Published by Maker Media, Inc., 1700 Montgomery Street, Suite 240, San
 Francisco, CA 94111

Maker Media books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (safaribooksonline
.com). For more information, contact our corporate/institutional sales depart-
ment: 800-998-9938 or corporate@oreilly.com.

Publisher: Roger Stewart
Editor: Patrick DiJusto
Copy Editor and Proofreader: Elizabeth Welch, Happenstance Type-O-Rama
Interior Designer and Compositor: Maureen Forys, Happenstance Type-O-Rama
Cover Designer: Maureen Forys, Happenstance Type-O-Rama
Indexer: Valerie Perry, Happenstance Type-O-Rama

August 2017: First Edition

Revision History for the First Edition
2017-08-08 First Release

See oreilly.com/catalog/errata.csp?isbn=9781680453027 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker Media,
Inc. The Maker Media logo is a trademark of Maker Media, Inc. BOOK TITLE and
related trade dress are trademarks of Maker Media, Inc. Many of the desig-
nations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and
Maker Media, Inc. was aware of a trademark claim, the designations have been
printed in caps or initial caps. While the publisher and the author have used
good faith efforts to ensure that the information and instructions contained in
this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages
resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or
other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to
ensure that your use thereof complies with such licenses and/or rights.

978-1-680-45302-7

mailto:corporate@oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers expert content
in both book and video form from the world’s leading authors in technology and
business. Technology professionals, software developers, web designers, and
business and creative professionals use Safari Books Online as their primary
resource for research, problem solving, learning, and certification training. Safari
Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals. Members have access to thousands of books, train-
ing videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bart-
lett, Course Technology, and hundreds more. For more information about Safari
Books Online, please visit us online.

How to Contact Us
Please address comments and questions to the publisher:

Maker Media
1700 Montgomery St.
Suite 240
San Francisco, CA 94111

You can send comments and questions to us by email at
books@makermedia.com.

Maker Media unites, inspires, informs, and entertains a growing community of
resourceful people who undertake amazing projects in their backyards, base-
ments, and garages. Maker Media celebrates your right to tweak, hack, and
bend any Technology to your will. The Maker Media audience continues to be a
growing culture and community that believes in bettering ourselves, our envi-
ronment, our educational system—our entire world. This is much more than an
audience, it’s a worldwide movement that Maker Media is leading. We call it the
Maker Movement.

To learn more about Make: visit us at makezine.com. You can learn more about
the company at the following websites:

Maker Media: makermedia.com
Maker Faire: makerfaire.com
Maker Shed: makershed.com

mailto:books@makermedia.com

This book is dedicated to Becky and Reed,

who put up with a husband and father who

disappears into the workshop or office for

extended periods of time on a fairly regular

basis. On a related note, they also deal with

a number of screwy creations flowing out of

the aforementioned workshop.

Contents

Acknowledgments ix
About the Author x

1 Introduction to the micro:bit 1

2 A Tour of the micro:bit 15

3 Programming Using MicroPython 29

The MicroPython Web Editor 30

The mu Programming Environment 33

4 Some Basic Projects 45

The LEDs 45

The Buttons 52

The Accelerometer 54

The Compass 57

The Local Persistent Filesystem 60

Putting It All Together 63

5 The mbed Operating System 69

Getting an Account 70

yotta 77

Getting Started with the micro:bitviii

6 Interfacing with the GPIO Pins 91

The GPIO Pins and the Edge Connector

Breakout Board 92

The Motor Driver Board 103

7 Using Bluetooth 109

What Is Bluetooth? 109

Programming Bluetooth on the micro:bit 111

Third-Party Apps 123

8 Serial Bluetooth Communication and
the micro:bot 125

UART and Bluetooth 125

The micro:bot 134

A The Story of the BBC micro:bit 145

B Other Programming Environments 153

The Blocks Editor 153

Code Kingdoms 158

Microsoft Touch Develop 164

Index 171

Acknowledgments

Patrick is an awesome editor who not only makes sure that

I mean what I say and I say what I mean, but is also fun to

work with. Bob checks that stuff works the way I say it does.

Liz catches all the last-minute errors and makes sure that

the end product of our collaboration looks as great as it does.

And last but not least, Oliver helps to make sure the office

door remains in working order, Chloe ensures that all mobile

creations are capable of evasive maneuvers, and Smudge

both gives and receives emotional support.

I couldn't do it without you guys.

About the Author

Wolfram Donat is an engineer, a writer, and a maker who

has written books on subjects ranging from home-built ani-

matronics to Windows XP to using the Raspberry Pi in your

projects. His varied interests include robotics, embedded

systems, autonomous underwater vehicles, computer vision,

and the Internet of Things.

He received his degree in computer engineering from

the University of Alaska, Anchorage and has received fund-

ing from NASA for work on autonomous submersibles. He

currently lives in Southern California with his wife, son, and

a small menagerie.

1

Introduction to the micro:bit

If you’ve been paying attention to news in the world of

technology, you may have noticed that there seems to be

an astonishing number of single-board computers (SBCs)

hitting the market lately. In a wave of devices that may have

started with the Raspberry Pi, there are now dozens of small,

powerful devices, ranging in price from a few dollars to a few

hundred dollars. The Pi Zero, the Raspberry Pi Foundation’s

lowest-cost board, uses a small, 1 GHz, single-core ARM

chip and costs about five dollars. On the other end of the

spectrum, the NVIDIA Jetson TK1 includes both an ARM A57

quad-core chip and a 256-core Maxwell GPU and will cost

you about six hundred dollars. It is, however, still considered a

single-board computer. Kickstarter is full of new SBCs, some

successful, some not.

At the same time as the release of all of these surprisingly

powerful small computers, various technology companies

have been quietly releasing a flood of even smaller, lower-

power chips and devices in the background. These boards

are powered by a variety of processors, from ARM CPUs to

smaller microcontrollers like the Atmega 328, and they are

Getting Started with the micro:bit2

usually designed mainly for one purpose: performing one or

more simple tasks and then interfacing with the Internet of

Things (IoT).

What is the Internet of Things? For the full story behind

the IoT, check out the accompanying sidebar. The short

version is that the IoT is a worldwide web of small, low-

power devices that are able to communicate with other

devices—both IoT devices and more full-featured machines

such as smartphones and computers—via the Internet

and other smaller networks. These devices are meant to

connect everything, from your home thermostat to your

refrigerator to your toaster to your keychain, and allow

them to communicate via a network. They must neces-

sarily subsist on almost no power (there’s no room for big,

bulky batteries in your keychain) and thus must also be

sort of stupid, CPU-wise. The vast majority of them don’t

need to be particularly powerful, though; many times their

main function is simply to collect data and relay it to a

more powerful computer, smartphone, or tablet, or per-

form a simple task in response to a simple command from

another device.

What Is the IoT?
The Internet of Things, or “IoT” for those in the know, is what
many call a natural evolution of technological advances in
shrinking microprocessors, low-power devices, and network-
ing connectivity. It’s pretty much accepted that it’s the next
step in wiring the planet together and making all of our stuff
smarter.

Introduction to the micro:bit 3

Up until a decade ago or so, computer processors were still
too big and required too much power to be used in anything
other than servers, desktops, laptops, and maybe a few clunky
tablets. Firms like Intel were still trying to shrink the chips,
not really worrying about putting them into small devices.

The huge growth of the cell phone changed that, however.
It is projected that by 2020, seventy percent of the world’s
population over the age of six will have a mobile phone and 90
percent will be covered by broadband networks. The upswing
in mobile phone usage, and the associated need for smaller,
faster, more powerful devices, sparked a new arms race in
small, low-power chips, which in turn were used in devices
other than smartphones, like the Raspberry Pi and the
micro:bit. Developers and companies began to realize that
they could use these chips to connect pretty much anything
over a network, and the IoT was born.

The IoT is still in its infancy, despite experts continuing to
tout it as the next big thing (guilty!). It is starting to take
hold, though, as evidenced by devices such as the Nest ther-
mostat, the Ring doorbell, and now the Google and Amazon
digital home assistants. Internet connectivity is beginning
to show up in smart refrigerators, and it’s only a matter of
time before your washing machine will be able to text you
when your load of delicates is done. For that is one of the
goals of the IoT: to allow things that you interact with on a
daily basis to have enough brains to make your life easier.

These small IoT development boards also run the gamut

of prices but generally stay below the one hundred dollar

mark. The C.H.I.P. is the newest kid on the block (Figure 1.1)

and costs only about nine dollars. The Particle Photon has

Getting Started with the micro:bit4

an ARM Cortex processor and will cost you about twenty

dollars, and the Intel Edison—the powerhouse of the group—

costs about seventy dollars (Figure 1.2).

FIGURE 1.1: The C.H.I.P.

Into this group we have a newcomer: the BBC micro:bit.

This little device is being given away, at no cost, to a million

11-year-old students in the United Kingdom, courtesy of the

British Broadcasting Corporation’s Make It Digital initiative.

This initiative is part of a push to increase digital skills among

British youngsters, as—according to the BBC—there is a sig-

nificant digital skills shortage in the country, with 1.4 million

skilled professionals projected to be needed in the next five

years. The BBC is following in the footsteps of the Raspberry

Pi Foundation; organizers of the initiative believe that by giv-

ing young people access to cheap or free computers and

technology, they can stimulate a lifelong interest in learning,

programming, and engineering. The company is partnering

with about 30 other organizations to bring this idea to fruition.

Some are offering financial assistance; others, like element14,

are helping manufacture the boards, and so on. It’s truly a

group effort on the part of many different technological asso-

ciations in order to get kids interested in technology.

The micro:bit itself is a tiny device (Figure 1.3)—4 by 5

centimeters to a side—and can be powered by a variety of

FIGURE 1.2: Intel Edison

Introduction to the micro:bit 5

sources: two AAA batteries, a coin cell, a USB connection,

or any other source of 3 volts. The board connects to your

Windows, Mac, or Linux computer with a standard micro USB

cable and mounts as an external drive or device without any

driver software necessary. It is equipped with twenty-five

LEDs and two small buttons, all of which are programma-

ble, that allow the user to interact with it. The bottom of

the board is lined with twenty general-purpose input/

output (GPIO) pins, which are accessible with either alliga-

tor or banana clips, or by inserting the board into a special

connector that connects headers to all of these pins. The

micro:bit also has an onboard compass and accelerometer

that you can read from and incorporate into your scripts,

and it has an onboard Bluetooth Low-Energy (BLE) antenna

that enables it to pair with any Bluetooth-enabled devices,

such as your smartphone or laptop.

FIGURE 1.3: The BBC micro:bit

Getting Started with the micro:bit6

In the interest of keeping things simple so that kids stay

interested and involved, the Micro:bit Foundation offers five

(as of this writing) different ways to program the micro:bit.

All five are web-based programming environments for differ-

ent languages, written in JavaScript. Students can choose

Touch Develop by Microsoft, Code Kingdoms’ JavaScript

editor, Microsoft’s Block Editor (Figure 1.4), MicroPython (Fig-

ure 1.5), or PXT, again by Microsoft. All of these environments

vary according to skill level; some are simple block-based

programming similar to Scratch (students move code-based

puzzle pieces into place in a graphical environment) whereas

others are fully text based for more advanced coders. There

are other ways to program the onboard processor that go

beyond these simple web-based environments, which we’ll

get into later.

FIGURE 1.4: Microsoft Block Editor environment

Introduction to the micro:bit 7

FIGURE 1.5: MicroPython environment

So how do we go about procuring one of these awe-

some boards? As I write this, the micro:bit is now available

all around the world, though it was originally only available

from UK-based sellers. If you prefer to order from overseas,

however, https://ww.kitronik.co.uk has always been a reliable

source, and that’s where I’ve gotten all of my micro:bits and

the associated accessories.

Speaking of accessories, I highly recommend doing some

more serious shopping when you buy your board, because

you’re more than likely going to want to do more with your

board than just program a few simple scripts and games.

When you go online to purchase your micro:bit, do a search

for “micro:bit accessories” and see what’s available. Here’s

what I bought to go along with mine:

 ◩ The Edge Connector Breakout Board (Figure 1.6)—

This is almost a must-have, because without it you

will have an extremely difficult time accessing the

https://ww.kitronik.co.uk

Getting Started with the micro:bit8

GPIO pins on the bottom of the board. Once you

slide the micro:bit into the slot on the edge connec-

tor, all of its pins are mapped to a row of headers,

allowing you to use the jumper wires you probably

already have in your toolkit.

FIGURE 1.6: The Edge Connector Breakout Board

 ◩ The Edge Connector Motor Driver Board (Figure 1.7)—

If you want to use your micro:bit to do anything

really cool, like, say, drive a robot in response to sig-

nals from your cell phone, you’re going to want this

board. Again, you slide the micro:bit into the slot,

and all the pins you need to connect to external

motors and power sources are instantly made avail-

able to you. It’s very handy and will save you a lot of

time when it comes to building.

Introduction to the micro:bit 9

FIGURE 1.7: The Edge Connector Motor Driver Board

 ◩ The MI:power board (Figure 1.8)—I don’t consider

this board as vital as the other two I’ve mentioned,

but it’s definitely useful nonetheless. First, it allows

you to power your micro:bit using a coin cell battery

rather than a bulky pair of AAAs. Second, it mounts

to your board as a shield, similar to the Arduino

shields, making everything a one-piece set. And

finally, it has a piezoelectric buzzer built in, letting

you experiment with the sound-making capabilities

of the micro:bit without having to make any extra

connections.

Getting Started with the micro:bit10

FIGURE 1.8: The MI:power board

I’m going to proceed with this introductory chapter on

the assumption that you have at least the basic micro:bit in

your hot little hands and are itching to get to do something

with it. We’ll get to using the accessories later.

For now, let’s jump in, power on the micro:bit, and see

what it does. Connect it to an available USB port on your

computer using a micro USB cable (your device probably

came with one; if it didn’t, any standard micro USB cable

will work). The board LEDs will flash in a square pattern, and

then “HELLO” will scroll across the board (Figure 1.9). If by

chance your board doesn’t have this introductory program

loaded onto it, you can download it here: https://github.com/

wdonat/microbit-code/blob/master/chapter1/MicroBit-First-

Experience.hex.

https://github.com/wdonat/microbit-code/blob/master/chapter1/MicroBit-First- Experience.hex

Introduction to the micro:bit 11

FIGURE 1.9: “HELLO” on the micro:bit

Next, the LEDs will flash “A,” followed by an arrow pointing

to the button on the left. When you push the button, the

LEDs flash another pattern, and then “B” and a right-pointing

arrow. Pushing this button results in another pattern, and

then the message “SHAKE!” Shaking the board results in yet

another pattern, followed by the message “CHASE THE DOT.”

This is a little game that allows you to tilt the micro:bit to

make one light “follow” the one lit by the device. Once you

“catch” it once or twice, the board replies with “GREAT! NOW

GET CODING!” and a little heart symbol that flashes on and

off (Figure 1.10).

FIGURE 1.10: The micro:bit heart symbol

Getting Started with the micro:bit12

This little introductory display may not seem like much,

but it’s an enlightening intro into some of what the board

can do. The LEDs can be lit in any pattern you like, includ-

ing scrolling text—this addresses the problem of interact-

ing with the user without a screen or monitor. (In fact, later

on when you’re programming, any error messages actually

scroll across the LED array. Handy, if a bit difficult to read.)

You can program the two buttons to respond to presses, and

you can also use the onboard accelerometer to respond to

user inputs such as shaking. In fact, about the only things

on the board not introduced by the introductory program

are the onboard compass/magnetometer and the Bluetooth

Low Energy antenna (BLE). Don’t worry—we’ll get to those

soon enough.

Now that you’ve seen the default program, let’s go

through the process of putting our own simple program

onto the board. Probably the easiest way to program the

micro:bit is while it’s still attached to the computer with the

USB cable. If you open your Windows Explorer window or the

Mac Finder window, you should see the micro:bit showing up

as an external drive or device (Figure 1.11.)

FIGURE 1.11: micro:bit Finder window (Mac)

Introduction to the micro:bit 13

When you write programs (also called scripts) and down-

load them to your computer, you’ll move the resulting hex

file to the MICROBIT drive you see here. This will flash the

device with your program. You can also flash the device with

a Bluetooth connection, but we’ll get to that later.

For now, let’s experiment with adding another pro-

gram. Open a browser window and visit https://github.com/

wdonat/microbit-code/tree/master/chapter1. Right-click on the

 microbit-astounding-script.hex file and save it to your

machine. When the file is downloaded (it shouldn’t take

long—it’s only 584 KB), drag the script onto your MICROBIT

device and let it do its thing. The transfer should only take

a few seconds. When the device has finished flashing (sig-

nified by the yellow LED ceasing to flicker), your computer

may complain that you should properly eject the MICROBIT

device; ignore it and just close the warning pop-up window.

This is a simple script; it just counts the number of times

you press the A button (on the left) and displays that count

after each press, up to 150 presses. The actual script is

seven lines of code, though the hex file is much more—about

13,000 lines. (If you’re interested, right-click on the down-

loaded hex file and open it with a text editor like Notepad or

Sublime Text, and you can see what the script looks like after

it’s been compiled. Definitely not user-friendly.) The script

is straight from the Microsoft Touch Develop page for the

micro:bit (one of the programming editors that are available

to use) and looks like this:

function main()
 var counter := 0
 input → on button pressed (A) do

counter := counter + 1
basic → show number (counter, 150)

 end
end function

https://github.com/wdonat/microbit-code/tree/master/chapter1

Getting Started with the micro:bit14

I won’t go too deep into detail about this script now,

because it’s highly language-dependent and I don’t plan to

cover Touch Develop until one of the appendices, but a quick

look over the code shows how basic the commands really

are. You declare a variable (counter), look for some inputs,

tell the board what to do with those inputs, and finally end

the function. It really doesn’t get much simpler than that.

That is a very high-level introduction to the micro:bit,

what it can do, and how to interact with it. In the next chap-

ter, I’ll go over what exact hardware is on the board, as well

as the add-ons we talked about.

2

A Tour of the micro:bit

Now that you’ve had a quick introduction to what the

micro:bit is and what it can do, it’s time to take a look at this

impressive little device and see what’s packed onto its small

surface (4.5 × 5 cm—it’s been billed by the BBC as being

about half the size of a credit card). I usually introduce new

users to a device like this by examining each component

one by one, moving clockwise around the board, and that

seems like a perfectly reasonable route to take now. I’ll refer

to the side of the micro:bit with the USB power connector

and the micro:bit logo as the back, and the side with the

array of LEDs and the two push buttons as the front (Figures

2.1 and 2.2).

Starting at the top (12 o’clock position) on the back, we

have a standard USB micro port (not a USB mini port). When

you connect the micro:bit to your computer, the port is used

both to power the board and for data transfer from your

computer. The board requires 3.3V to operate. USB offers

around 5V, so a regulator is used to lower the input voltage

to a level that the board can use when it’s being powered by

your computer.

Getting Started with the micro:bit16

FIGURE 2.1: Back of the micro:bit

FIGURE 2.2: Front of the micro:bit

A Tour of the micro:bit 17

Keep in mind, however, that this port is not necessary for

either power or data transfer. You can power the micro:bit

with a battery pack, and you can load programs to the board

(also called flashing the board) by way of Bluetooth and a

Bluetooth-enabled device such as a smartphone or lap-

top. This can come in handy if you install your micro:bit in

an inaccessible place such as a project box or buried deep

inside a load of electronics and wiring; you can flash the

board with a new program by merely coming within a few

feet of it. We’ll go over Bluetooth connectivity and flashing

in Chapter 3, “Programming Using MicroPython,” and Chap-

ter 7, “Bluetooth.”

Just next to the USB port, before the push button, is a

small yellow LED that you probably wouldn’t notice until

you plug the unit into your computer. It’s a status LED, and

its purpose is simply to let the user know that the micro:bit

is doing something, whether it’s loading a program or send-

ing data.

Next to the USB port and the status LED is a momen-

tary push button that serves as the reset button. When the

board has a program onboard and is executing it, pushing

this button resets it to the start of that program, as if the

board had been powered off and then on again. This button

is not programmable by the user; it’s hard-coded as a reset

button only. If you’ve played around with an Arduino, you’re

familiar with the concept of this button and what it’s used

for. It’s helpful if your board freezes, if you need to restart a

program for any reason, or if you just need to reset the board

to a last-known-good configuration.

Next to the reset button is another power port. This port

has two pins and is where you’ll plug in an external power

source if you’re not powering the device via USB. The basic

device comes with a battery pack that holds two AAA

Getting Started with the micro:bit18

batteries; the Molex female connector to that pack plugs

into the male pins on this connector.

Continuing in a clockwise direction, you’ll see a small

black integrated circuit (IC) set back a bit from the edge of

the board (Figure 2.3). This is the USB controller that allows

the CPU to communicate with the USB port. It’s an ARM

Cortex-M0+ chip that not only allows the USB communica-

tion to take place, it also regulates the 5V power from the

USB port down to the 3.3V, which the micro:bit needs to

operate. The regulator portion of the chip isn’t necessary or

used if you’re powering your board with batteries.

FIGURE 2.3: The USB microcontroller

Now we come to the bottom of the board and its piano-

key-like appearance. Each of these twenty-five individual

metal-plated “stripes” is a general-purpose input/output

(GPIO) pin, which can be accessed by the user. It can be a

A Tour of the micro:bit 19

difficult thing to do if you don’t have an edge connector

(see Chapter 1, “Introduction to the micro:bit”), but the pins

labeled 0, 1, 2, 3V, and GND (on the front of the board) are

easily accessible with either a small alligator clip or a banana

plug (Figure 2.4).

FIGURE 2.4: Simple connections

Still moving clockwise, directly above the pins on the

left is the first of the onboard sensors, the accelerometer.

This miniscule black IC is a Freescale MMA8652 full-fledged

three-axis accelerometer that communicates with the pro-

cessor using the I2C protocol. It has 12 bits of resolution and

communicates with data rates from 1.56 Hz to 800 Hz—

quite a wide range of possibilities, depending on your needs

and your project. No, it’s not a professional nine-axis iner-

tial measurement unit (IMU) like you will find in many drone

autopilots (for example), but three axes should be plenty for

most simple micro:bit projects. You always have the option

of upgrading and connecting a more powerful sensor via the

GPIO pins, should your project call for it.

Getting Started with the micro:bit20

Next to the accelerometer is the other onboard sensor,

the compass/magnetometer. Similar to the accelerometer,

this IC is a Freescale MAG3110 three-axis digital magnetom-

eter. It can be used as either a compass or a metal detector,

and like the accelerometer communicates with the CPU over

the I2C bus. It measures magnetic fields with an output data

rate of up to 80 Hz, and has a sensitivity of 0.1 microteslas.

Like the accelerometer, we’ll explore how best to communi-

cate with it in a later chapter.

The I2C Protocol
I2C (or I squared C or I-I-C) stands for inter-integrated circuit,
and is a communications protocol that was developed by
Philips Semiconductor and released back in 1982. It’s a multi-
master, multislave protocol that allows multiple devices to
communicate with each other over typically short distances.
I2C is a serial bus that’s often used with microcontrollers, sen-
sors (like those on the micro:bit board), and small embedded
devices. Most single-board computers like the Raspberry Pi
and many, many sensors, ranging from barometers to GPS
modules to magnetometers to thermometers and others,
have native support for the I2C protocol, and it remains one of
the easiest, most basic ways to communicate with external

devices and sensors from a central CPU.

After these two sensors we come to the heart and brain

of the whole thing—the processor (Figure 2.5). This little

black square is a 32-bit ARM Cortex M0 processor with 256

KB of flash memory and 16 KB of RAM, running at 16 MHz. It’s

Bluetooth-capable, with an embedded 2.4 GHz Bluetooth

low-energy transceiver.

A Tour of the micro:bit 21

FIGURE 2.5: The ARM CPU

So what does all of that mean in the context of capa-

bilities and power? First of all, it’s a 32-bit machine, so it’s

not quite as fast or powerful as the 64-bit processors we’re

all getting used to. However, it’s more than fast enough for

a tiny machine like this. The 256 KB of flash memory refers

to the memory that is retained when there is no power; in

other words, when you unplug the micro:bit from your com-

puter or from its battery pack, the contents of flash memory

are retained, sort of like the hard drive on your computer

or laptop. This is where your hex files are stored and is why

the program will repeat every time you power on the device.

Now, 256 KB may not seem like a lot of memory (most JPEG

files are bigger than that, for example), but the hex files your

programs are stored in are tiny. A 256 KB hex file would be

quite a hefty program.

Getting Started with the micro:bit22

The contents of the 16 KB of RAM, on the other hand,

disappear every time the device loses power, just like the

RAM in your computer. This batch of memory is where the

micro:bit performs calculations; it moves data from the

registers into RAM, does what it needs to, and then moves

it out again. Because 16 KB is not a whole lot of space, it

limits the micro:bit’s capabilities, but the board was never

designed to do a lot of heavy lifting, compute-wise. Instead,

it makes more sense to farm calculations and computa-

tions out to another, more powerful device, such as a smart-

phone, and merely use the micro:bit to collect and display

data. It’s helpful to remember that the micro:bit, like other

IoT platforms, is necessarily a very low-power device, and a

more powerful onboard CPU would use unhealthy amounts

of power. It’s quite impressive that the ARM chip is as pow-

erful as it is for the amount of power it uses—at most around

0.03 watts, or about a one-hundredth as much as a stan-

dard night light.

Finally, to complete our journey around the back side

of the board, we come to the almost invisible Bluetooth

Low-Energy (BLE) antenna just above the processor. If you

tilt the micro:bit just right in the light, you can see the

square-wave-like design embedded in the board in the top-

left corner. This antenna allows the board to communicate

with any other Bluetooth-enabled objects less than 100

meters away, according to the published specifications. The

BLE, also called Bluetooth Smart protocol, enables a data

rate over the air of 1 to 3 megabits per second, all while using

less than 15 milliamps. Not only does this allow you to flash

your board remotely with a laptop or smartphone, but it also

lets you send sensor data from the board to another device

without having to worry about draining your batteries. BLE

A Tour of the micro:bit 23

is supposed to allow you to operate your device for weeks

or even months using only a simple coin cell battery.

What’s the Range of BLE?
Although the published specs for Bluetooth Low-Energy
state an operational range of 100 meters, my editor and I
had doubts as to what the actual range of these devices is,
so I decided to conduct a few informal tests. For both tests, I
used a “Find my phone” application that requires pairing the
micro:bit with your phone. The application loads a script onto
the board that asks you to press the left (A) button. When
you do that, it sends a Bluetooth signal to the phone, and
the phone hollers “Yoo-hoo! Here I am!” at you until you press
an acknowledgment button. For the first test, I paired with
my board and then walked through my house, seeing how far
away I could get before the phone would no longer respond.
The results were disappointing, to say the least: in a clear
line-of-sight path, the phone lost the signal at 26 feet (about
8 meters) away. When I turned a corner, I immediately lost the
signal and the phone disconnected from the micro:bit.

For the second test, I took the phone and the micro:bit to
a local football field, where I wouldn’t be dealing with local
WiFi signals, walls, metal, and other possible interference,
electromagnetic and otherwise. Again, I paired my phone
with the micro:bit and walked away until the phone no lon-
ger responded to the device. The results? As disappointing
as indoors. The farthest I was able to get before the phone
no longer responded was again 26 feet. A few variables such
as phone and micro:bit positioning seemed to affect results;
holding the phone one way increased the range, whereas
holding the micro:bit another way made communication com-
pletely impossible. Multiple attempts resulted in a maximum
communication distance of about 8 meters.

Getting Started with the micro:bit24

The BLE specs probably apply to idealized conditions only—
in a padded room, encased in a Faraday cage, etc. In addi-
tion, the size and shape of your antenna can make a real
difference, and the antenna on the micro:bit is pretty small.
I found some reports online of people getting ranges of over
200 meters, but I was unable to duplicate or confirm those
results. In the real world it appears that you’ll only be able to
rely on Bluetooth connectivity when you’re in the same room
as your micro:bit. Keep that in mind as you design your future
applications.

All right, that’s the back of the board, where all of the

behind-the-scenes action is. Let’s take another look at

the front (Figure 2.6).

FIGURE 2.6: Another look at the front of the micro:bit

A Tour of the micro:bit 25

The front of the micro:bit may be where all the magic

happens when you’re interacting with it, but there really isn’t

much there. There’s a momentary push button on each side,

A and B, each programmable by the user. Between them is a

five-by-five matrix of low-power surface-mount LEDs, each

of which is again programmable by you. These can be used

to scroll text, display patterns, show arrows pointing in par-

ticular directions, and almost anything else you can think of

doing with a grid of twenty-five tiny lights.

Along the bottom is the row of GPIO pins that we dis-

cussed earlier, though here you can see the labels for the

most commonly used pins. As I mentioned in Chapter 1, the

best way to access these pins is to purchase the edge-

connector breakout board and simply slide your micro:bit

into the slot, front-side up, as you see in Figure 2.7. This

breakout board exposes a double row of pins more like the

ones you’re probably used to accessing on your Raspberry

Pi board, and lets you use the header wires you probably

already have in your toolkit. Be aware, however, that the

number of pins is misleading; the pins are double-stacked,

which means that each pair of adjacent pins leads to one

single GPIO pin on the micro:bit. You do not, however, have

to connect to both pins to interact with that GPIO pin. One

or the other is sufficient.

So that’s a tour around the little micro:bit board. It’s a

very basic device, designed to be easy to use and still be

powerful enough to do interesting things. As a device for

experimenters and hobbyists, it’s a bit low-powered com-

pared to the Raspberry Pi, but it also fills a completely dif-

ferent niche than the Pi and its ilk.

Getting Started with the micro:bit26

FIGURE 2.7: micro:bit inserted into edge connector breakout board

In the next chapter, I’ll introduce you to the several dif-

ferent ways of programming the micro:bit and delve deeper

into the programming environment I prefer—MicroPython.

What’s with the ARM Processor,
Anyway?
If you’ve been keeping up with the embedded computer
space, particularly in hobbyist devices like the Raspberry
Pi and other single-board computers (SBCs), you’re prob-
ably aware of how ARM processors seem to be taking over
the market. The Raspberry Pi uses a 1.2 GHz quad-core ARM
Cortex A53. The BeagleBoard uses a 1 GHz ARM Cortex A8,
the micro:bit uses an ARM Cortex M0 and ARM Cortex M0+,
and the list just goes on and on. Why are ARM processors so
pervasive?

A Tour of the micro:bit 27

Today, 99 percent of smartphones and tablets have an ARM
chip installed. The continuous drive to go smaller and lighter,
and to pack ever more power into ever-smaller packages
for cell phones has driven development of these chips at an
extremely fast pace. The result—small, cheap processors—
has had a huge impact on the SBC market.

The ARM (Acorn RISC Machine and then Advanced RISC
Machine) architecture was introduced more than 30 years ago,
in 1985. A British company called Acorn Computers brought
out the BBC Micro, using its own 32-bit Reduced Instruction
Set Computer (RISC) chip. The BBC Micro was hugely popular,
going on to sell over a million and a half units, which helped to
keep Acorn on the map. Although the successor to the Micro
was kind of a flop, the concept of RISC machines was a winner,
and Advanced RISC Machines was born as a separate research
company in 1990 through a joint venture with Apple Comput-
ers and VLSI Technology. Advanced RISC Machines eventually
became the ARM Holdings we know today. This graphic shows
the Apple A5 chip, containing a dual-core ARM Cortex A-9.

ARM chips differ from Intel and AMD processors mainly in
size and power usage. Mainstream CPUs are designed to effi-
ciently “farm out” processing tasks to different devices on
the motherboard, such as the GPU and the network interface
card (NIC). ARM chips, on the other hand, have all of these
things built into the chip. The ARM Cortex A-9, for instance,
is a 1.2 GHz dual-core chip with
onboard 3D graphics, 1080P video
encoding and decoding, USB, PCIe
and SATA interfaces, and various
communication channels such as
WiFi and GPS. It’s not nearly as fast
as a similar Intel or AMD processor,
but it does what it does cheaply and
inexpensively, power-wise.

Getting Started with the micro:bit28

Because it does these things so well, ARM chips can be
found in an incredible variety of devices: game consoles,
set-top boxes, personal media players, ebook readers, smart
TVs, toys, coffeemakers, and a whole host of possibilities in
your automobile, such as airbags, antilock brakes, computer
management… the list just goes on. The continuing drive for
smaller, more powerful devices means that manufacturers
will continue to try to make chips more versatile, and ARM
has proven itself to be a great platform for doing just that.

ARM’s low power needs and continually growing architec-
ture has also piqued the interest of the government; NASA
and other government organizations like the Air Force are
currently investigating using ARM processors aboard space
vehicles (currently most satellites and probes use radiation-
hardened Intel or PowerPC chips). NASA recently released
a call for proposals for contractors to build a “chiplet”—a
multi core ARM-based board that is easily extensible and
could be used for future extraplanetary missions like the next
Mars rover.

ARM Holdings was purchased by a Japanese group, SoftBank,
in September 2016. This most likely will not affect consumer
devices using ARM chips, but it may affect governmental
contracts, because many devices used by the government
are mandated by contract to be built using hardware and
technology acquired from previously approved sources. We’ll
have to wait and see if this transfer affects ARM’s takeover of
space as well as the planet Earth.

3

Programming Using
MicroPython

Now that you’ve had a very basic introduction to both

the micro:bit’s hardware and how to write a program to it,

let’s begin talking about how to actually write a program.

As of this writing, you can use at least six different coding

environments to program your board: MicroPython, Micro­

soft PXT, Microsoft Block Editor, the Code Kingdoms Java­

Script editor, Microsoft Touch Develop, and the mbed yotta

integrated development environment (IDE). All of these

languages have a JavaScript­based web environment you

can use to create your programs, and for basic scripts that’s

probably all you’ll need.

However, at some point you’re probably going to want

to dig deeper into the micro:bit’s capabilities, and learning a

more robust code is the best way to make that a bit easier.

I’m going to use this chapter to introduce you to Micro­

Python, my language of choice when it comes to program­

ming the micro:bit. You may know from my previous books

that I’m already a big fan of Python as a coding language,

so discovering that there was a native Python­esque way

Getting Started with the micro:bit30

to interact with the board made it a no­brainer, in my opin­

ion, as to what language to use and teach. If you’ve never

used Python before, MicroPython is a great introduction to

the language. It’s a bit less feature­rich than full­fledged

Python, but it’s exactly the same, syntax­wise, which means

that lessons learned in this environment will carry over well

should you decide to learn regular Python as well.

We’ll start with learning the web­based side of things,

and then we’ll explore how to program MicroPython for the

micro:bit directly on your computer.

The MicroPython Web Editor

To start with programming via the web, point your browser to

http://microbit.org/code/. Choose the Python editor and click

the “Let’s code” button. You’ll be taken to a web­based edit­

ing page that looks like Figure 3.1.

As you can see, there’s a (fully functional) example script

already loaded for you. If you’d like to try it out, click the

Download button. You’ll be prompted to save the resulting

hex file to your computer.

FIGURE 3.1: The MicroPython scripting page

http://microbit.org/code/

Programming Using MicroPython 31

Once it’s downloaded, connect your micro:bit if you

haven’t already. It should show up as an external disc drive.

Simply drag the downloaded hex file (unearthly-script.hex

in this case) onto your micro:bit’s drive icon. The board will

flash, and then you should be greeted with “Hello, World!”

scrolling across the display, followed by a heart symbol.

NOTE If for some reason you plug your micro:bit into a USB
slot on your computer and it lights up but doesn’t show as
an external drive, you may have a USB cable that’s designed
only for power, not data. They’re not common, but they do
exist. Before you return your board as defective, try another
cable—it’s likely to work.

A few icons are spaced across the top, so let’s take a look

at them. The first one, My Scripts, takes you to a page where

you can see the scripts you’ve been working with since you

visited the page. If you’ve signed in with a micro:bit account,

this is where all your saved scripts will go. You don’t need to

create an account to use the editor, so creating one is up

to you. The interface will save all your scripts until you close

your browser, unless you’ve set your browser to save cookies;

in that case, your scripts should remain saved indefinitely,

which is nice. In any case, your scripts will save with names

like extraordinary script, unearthly script, and so on. Unfor­

tunately, there doesn’t seem to be a way to rename your

scripts unless you download them.

To the right of the Download icon is the Snippets but­

ton. This is less helpful than you’d think; I was hoping for

some functional examples, such as accessing the buttons

or onboard sensors for the board. Instead, the Snippets

Getting Started with the micro:bit32

button shows you some common Python functions you

can use in your code, like while, with, class, if/then, and

so on. If you’re new to the Python language, this can be

useful, but if you’re looking for more information about

the micro:bit­specific functions, you’ll want to skip ahead

to the non­web­interface bit in the next section, where I

discuss the mu programming environment. These snippets

make the web interface act something like a regular IDE.

Typing the first few letters of a Python keyword like import

or if and then pressing the Tab key fills in the code for you.

The interface also adds a helpful comment reminding you

to fill it in (Figure 3.2).

FIGURE 3.2: Typing if and pressing Tab fills in the code for you.

Next to the Snippets button is the Help button, which

takes you to (as you’d expect) an introductory web page—

in another tab, luckily, so your current script is saved. This

page walks you through the web­based interface, just like

I’m doing now, and gives a few examples of some simple

programs. In that sense, it provides more information than

clicking the Snippets button.

Programming Using MicroPython 33

Finally, there are two small icons on the right—the Zoom

buttons. These let you enlarge or shrink the code, which is

useful if you’re displaying your screen with a projector for a

group, for example.

It’s important to remember that this is a fully functional

programming interface, if a bit light in the documentation

department. Once you’re familiar with what you can do with

your micro:bit and the commands and functions needed to

program it, the web interface can be a handy way of throw­

ing a quick script together wherever you may happen to be

and quickly flashing your board. I think this interface would

be most useful for teaching in a group setting, where stu­

dents can follow along with a teacher’s script and flash their

boards without having to deal with installing a full IDE on

their individual computers.

The mu Programming Environment

As I’ve already mentioned, the Python web interface is fine

for some basic board programming, but there are some

very good reasons for installing an IDE on your computer to

do your programming. For one thing, you’ll be able to save

your work to your local machine, making it easier to work

in stages. For another, code completion can be extremely

helpful when you’re just not sure what function you need or

exactly what arguments are necessary when you’re calling a

function. Most good IDEs have a code­completion feature,

where you can enter the first few letters of a word and the

IDE will suggest common functions and already­created

variables that will fit. In a situation like this one, where you’re

not sure what functions are available, code completion can

Getting Started with the micro:bit34

come in very handy. The web interface has this functionality,

but it’s extremely limited in its vocabulary. For instance, in

the web interface, typing wh and pressing the Tab key will fill

in the block:

while True:
 # TODO: write code...

This is nice, but chances are that if you type wh, you

already know you’re planning to type while and the Tab

completion is just a timesaver. However, if you type

display.show(Image.

in the web interface environment, nothing happens, while in

the mu programming environment we’re about to explore,

the interface will clearly illustrate the possibilities that can

follow Image. with a drop­down list.

As it turns out, there is a full IDE for MicroPython, and

it’s called mu. It’s the basic development editor suggested

by the micro:bit foundation for working with the board. It’s

an easy download and installation process, and it works

for Windows, Mac, and Linux. Point your browser to http://

codewith.mu and scroll to the bottom of the page, where you

can choose your operating system flavor. Download and

install the correct version; Windows uses an .exe file, Mac

has a .zip file, and Linux uses a .bin.

If you’re using a version of Windows earlier than Win­

dows 10, after you run the EXE file, you’ll need to install an

additional driver in order to make a serial port available with

which to communicate with your micro:bit. Click the link on

the Download page, and follow the instructions included.

According to the mu website, if you’re using Windows 10 this

step won’t be necessary. However, when I tried to access

the micro:bit using my own Windows 10 installation, I had

http://�codewith.mu

Programming Using MicroPython 35

to install that driver in order for things to work, so bear that

in mind.

If you’re using a Mac, download the .zip file to your local

directory. When it’s finished, right­click it and choose Open.

This will result in a mu application (Figure 3.3) appearing in

the same directory as the downloaded .zip file, which you

can then copy to your Applications folder. Depending on

your security settings, the first time you run it you may get

an error because it’s from an unsigned developer; if that’s

the case, just open the Security & Privacy settings in your

System Preferences and let your computer know that it’s all

right to open the program.

FIGURE 3.3: The mu application

Getting Started with the micro:bit36

If you’re using a Linux box for your development, down­

load the .bin file and save it to your local directory. Open a

terminal, navigate to the directory you saved to, and type

chmod +x mu-0.9.13.linux.bin

(or whichever version you have downloaded) in order to make

it executable. Then just type

./mu-0.9.13.linux.bin

to start the program.

dialout
According to the mu website, you may need to ensure that
you’re a member of the dialout group (in order to access the
micro:bit over a serial connection.) To do that, in your termi-
nal, type

getent group dialout

and you should see something like

dialout:x:20:<your username>

which tells you you’re a member of the group. If your user-
name is not listed, type

sudo adduser <your username> dialout

to add yourself. As an additional side note, on some Linux
systems the serial port is owned by serial, not dialout. To
check, type

ls -l /dev/tty*

and make sure that the owner of all devices listed is dialout,
not serial.

Programming Using MicroPython 37

Once you’ve installed mu, open it up, and you should see

the window shown in Figure 3.4.

FIGURE 3.4: The mu editor

Now that you’ve got mu installed and open, let’s take a

look at the interface. It’s designed to be very user­friendly and

most of the icons are pretty self­explanatory. They also display

a helpful dialog box if you hover your mouse over them. As you

can see, some of them duplicate the web interface icons, since

the web interface was designed to mirror the mu application.

On the left, the first group of three icons—New, Load,

and Save—let you create, open, and save your script to your

computer. Skipping the second group of three (we’ll get to

those in a moment), Zoom­in, Zoom­out, and Theme in the

next trio let you enlarge or shrink the text size, and switch

back and forth between a light or a dark environment. In the

final group, Check lets you check your code for mistakes

before you flash it to the micro:bit, Help opens the page

https://codewith.mu/help/0.9.13/ with your default browser,

and Quit quits the mu application completely.

https://codewith.mu/help/0.9.13/

Getting Started with the micro:bit38

Now let’s return to that second group of icons: Flash,

Files, and REPL. Flash is obvious—it loads the current working

script onto the micro:bit board. Once you’ve got a working

script in your window, just clicking the Flash button will load

it onto your device. You should be aware of two things about

this procedure, however. First, the code will be loaded onto

your micro:bit whether or not you save it to your computer

first. In other words, saving is not necessary to flash your

board. Second, the code is uploaded without a prior check

for errors. I say this because those among my readers who

are familiar with using an Arduino may remember that the

Upload button in the Arduino IDE first checks and compiles

the code before uploading it to the Arduino. The mu inter­

face, however, just uploads, errors or not. Because of this,

it’s a good idea to get in the habit of using the Check but­

ton before uploading a script. If (when) you do upload faulty

code, the micro:bit tries to helpfully tell you what’s wrong by

scrolling messages across the board’s LED display. However,

you can imagine how difficult it is to read Line 4 Name Error:

Name 'shrubbery' is not defined when it shows one hard­

to­read character at a time, slowly scrolling past:

...L...

...i...

...n...

...e...

...4...

...N...

...a...

...m...

...e...

...E...

...r...

...r...

...o...

...r...

…and so on. Please, get in the habit of checking your code.

Programming Using MicroPython 39

Files and REPL are a bit more involved than the Flash

button. Files allows you to view files that are currently on the

micro:bit. Clicking this icon brings up two additional panes

at the bottom of your window (Figure 3.5).

FIGURE 3.5: The Files interface

The left pane shows files available on your micro:bit,

and the right pane shows files that are available in your

local directory. If you’ve just opened mu for the first time

and haven’t saved any files, you won’t see any files listed

here. Try saving the open file as test.py and then close and

reopen the Files window, and you should see test.py listed

on the left.

REPL (Read­Eval­Print Loop) is perhaps the niftiest part

of the mu IDE—it allows you to “live­program” your board,

similar to an interactive Python session on your computer.

To try it out, click the REPL button. (The Files interface and

the REPL interface cannot be open at the same time; if you

get an error message from the IDE, click the Files icon again

to close the interface and then click REPL again.)

Getting Started with the micro:bit40

NOTE If your micro:bit has not been flashed with a Python
program, the REPL function will not work. If the REPL window
won’t open, no matter what you do, try flashing a minimal
Python program to the board and then trying again. Chances
are it’ll work.

Your working window should split into two panes—an

upper and a lower—where the lower pane is your interactive

session. If you type help(), the display will scroll with a short

introductory text, which gives you an idea of what you can

do (Figure 3.6).

FIGURE 3.6: The REPL help() command

Programming Using MicroPython 41

Try typing

display.scroll('Hello, World!')

at the prompt. Your micro:bit should immediately scroll

“Hello, World!” across the LEDs on the front. Typing

display.show(Image.HAPPY)

should show a happy face. To wait two seconds, type

sleep(2000)

And finally, to clear the display of the happy face, just type

display.clear()

in the interactive window.

Feel free to play around with some different Python

commands, but there’s an important (in my opinion) aspect

of this programming environment, aside from being able to

immediately test commands: the help() interactive com­

mand. Similar to Linux’s man pages, Python’s help() function

can be a lifesaver, especially in a situation like this one where

you’re not confident about how to use available functions.

To illustrate, type help(Image) at the command prompt. The

prompt immediately responds with a message about how

to easily access each of the device’s LEDs in a grid pattern

with a command like

Image (
 '09090:'
 '99999:'
 '99999:'
 '09990:'
 '00900: ')

which will display a heart. Even more useful is the informa­

tion it gives that you can control the brightness of each

Getting Started with the micro:bit42

individual LED by using numbers from 0 (off) to 9 (brightest).

To test this, try entering the following at the prompt:

>>> x = Image('02468:02468:02468:02468:02468:')
>>> display.show(x)

You should be rewarded with each row of your display

showing LEDs of increased brightness as they go to the left.

In fact, let’s play with this newfound information. Close your

REPL window by clicking the icon again, and then type the

following code into your main window:

from microbit import *
a = Image('86420:86420:86420:86420:86420:')
b = Image('68642:68642:68642:68642:68642:')
c = Image('46864:46864:46864:46864:46864:')
d = Image('24686:24686:24686:24686:24686:')
e = Image('02468:02468:02468:02468:02468:')
while True:
 display.show(a)
 sleep(200)
 display.show(b)
 sleep(200)
 display.show(c)
 sleep(200)
 display.show(d)
 sleep(200)
 display.show(e)
 sleep(200)
 display.show(d)
 sleep(200)
 display.show(c)
 sleep(200)
 display.show(b)
 sleep(200)

Flash this to your micro:bit, and you should be rewarded

with a line of dots moving back and forth across the display.

(You can download this code from the GitHub repo here:

https://github.com/wdonat/microbit-code/blob/master/chapter3/

line.py.) You can also add this Python code directly to the

online Python editor if you’d like to use it outside of the mu

programming environment. Download the file from GitHub

https://github.com/wdonat/microbit-code/blob/master/chapter3/line.py

Programming Using MicroPython 43

and then visit http://python.microbit.org/editor.html in your

browser. Drag and drop the downloaded line.py file into the

editor, press the Download button, save the line.hex file to

your machine, and then flash it to your micro:bit board.

The code here is pretty simple. Variables a through d sim­

ply show a bright line at varying points on the display sur­

rounded by progressively darker lines, and the while loop

scrolls through each frame of the animation. There are two

important lessons I should point out here, however. First of all,

you may notice that you don’t need to import time as you

would in a normal Python script. The microbit module has a

built­in method, sleep, that you call instead of time.sleep.

It takes milliseconds as an argument, so sleep(200) tells the

board to wait for 200 milliseconds before continuing. Second,

there is a weird syntax requirement you may notice as you

attempt to upload or check your script. After the final line of

code, you’ll need to press Enter/Return to create a newline,

but then you can’t have any whitespace in that newline. The

compiler requires a newline/carriage return at the end of the

last line of the script, but nothing after that. Since your last

line is in the middle of a while loop, after your last carriage

return you’ll need to press Delete until your cursor is at the

very beginning of the last line. It’s an idiosyncrasy that you’ll

need to remember as you go along. You can flash code to

your board with whitespace in the last line, but if you use mu’s

Check icon, it’ll complain unless the whitespace is removed.

So there you have it: an introduction to writing Python

code for (and directly to) your micro:bit. If you’d rather use a

different coding language, I’ll go through a few of the other

possibilities in Appendix 2. Now that you’re familiar with the

programming environment, in the next chapter we’ll discuss

a few basic projects, like writing text to the display and

accessing the onboard sensors.

http://python.microbit.org/editor.html

4

Some Basic Projects

Now that you’ve had an introduction to programming the

micro:bit in Python, it’s time to start tackling some basic

projects and getting used to interacting with the board and

all of its inputs and outputs.

The LEDs

Probably the most visually interesting part of the micro:bit,

obviously, is the 5×5 grid of bright red LEDs that take up the

majority of the real estate on the front of the device. With

these LEDs, you can print images, scroll text, and even play

games. They are also important because we use them to

display information (accelerometer data, instructions, and

so forth) if the board is connected to an external device such

as a smartphone.

You got a short introduction to using the LEDs in the pre-

vious chapter, but let’s see what else we can do with them.

To start, make sure you have mu installed on your sys-

tem. Plug in your micro:bit and open up mu.

Getting Started with the micro:bit46

Text

Since the built-in functions take care of turning individual

LEDs on and off for you, probably the easiest thing to dis-

play on the board is text. There are several different ways to

display text, but all of them use the display() method. In a

blank script, try entering the following:

from microbit import *
while True:
 display.show('Hello, world!')
 sleep(200)
 display.show('Hello, world!', 200)
 sleep(200)
 display.scroll('Hello, world!')
 sleep(200)
 display.scroll('Hello, world!', 200)
 sleep(200)

Press the Check button to check for errors in your code (I

know, it’s a simple script, but it’s good to get in the habit of

checking—remember, mu doesn’t check before uploading)

and then flash the script to your board.

You’ll notice that these lines of code—display.show()

and display.scroll()—are just different ways of showing

a line of text. The first three implementations of the show()

function show the letters in the string, one after another,

on the LED matrix. The show() function takes five parame-

ters, only one of which (the actual text string) is required. The

function’s full parameters are

display.show(x, delay=400, wait=True, loop=False,
clear=False)

x is the string (or image, or character, or whatever) you want

to display. delay (with a default value of 400) is the length

of time in milliseconds between characters. wait (with a

default value of True) determines whether or not the ani-

mation occurs in the background while other parts of the

Some Basic Projects 47

script continue (if wait is set to True, the rest of the script

pauses while the animation takes place). loop’s default value

of False means the text will only display once, and clear’s

default value of False means the display will not empty after

the last character displays.

The last few lines illustrate the scroll() method of dis-

playing text, which—obviously—scrolls the letters across

the matrix, marquee-style. Like show(), scroll() takes five

parameters, only one of which is required. The function’s full

parameter list is

display.scroll(string, delay=150, wait=True,
loop=False, monospace=False)

string is obviously the string you want to display (scroll()

does not work with images the way show() does). delay is the

length of time it takes each letter to show (smaller numbers

mean a faster scroll). Again, wait determines whether or not

the animation occurs in the background. loop’s default value

of False again means that the animation will not repeat. Set-

ting monospace to True means that each letter will always

take no more than five pixel-columns as it scrolls.

Images

If you want to show images on the micro:bit’s LED matrix,

the display.show() method is the one you’ll be using. Recall

that the first parameter of show(), x, can be a string, an

image, a character, or even a list. This means that you can

declare a list:

x = ['1', 'a', '2', 'spam', 'eggs', str(5 + 6)]

and then show each list member, one after another, with

 display.show(x). A caveat here is that show() can only

display either strings or what MicroPython recognizes as

Images; display.show(9) will throw an error (TypeError: not

Getting Started with the micro:bit48

an image), as will display.show(Image.CLOVER) (Attribute

Error: type object 'MicroBitImage' has no attribute

'CLOVER').

That being said, however, quite a few built-in images are

available for you to play with, and you can always create

your own the way we did at the end of the last chapter. More

images are sometimes added by MicroPython developers,

but the ones currently available on the micro:bit run the

gamut from clock displays 12:00 through 11:00 (Figure 4.1)

to arrows pointing in all directions, to happy and angry faces,

to check marks and houses and rabbits and snakes and even

Pac-Man (Figure 4.2).

FIGURE 4.1: Image.CLOCK2 (two o’clock)

Some Basic Projects 49

FIGURE 4.2: Image.PACMAN

The best way to display a list of what’s available is simply

to start typing a line in mu and look at the code auto-fill

suggestions. In your editor window, type

display.show(Image.

and take a look at the pulldown menu that becomes

available (Figure 4.3) as soon as you type the period after

Image.

Getting Started with the micro:bit50

FIGURE 4.3: Available premade images

If you want to create an image that doesn’t appear in

that list of ready-made pictures, creating one is not difficult.

Probably the easiest is to use a matrix, the way we did at the

end of Chapter 3, “Programming Using MicroPython.” You’re

creating a MicroBit.Image object, which takes as a parame-

ter a colon-separated list of pixel values, row by row. Those

values can range from 0 (the faintest) to 9 (the brightest). In

other words, you can create a square with an embedded X

with the following commands in your REPL window:

>>> a = Image('99999:99099:90909:99099:99999:')
>>> display.show(a)

Figure 4.4 shows the result. In fact, if you’re interested,

you can see exactly how each of the ready-made pictures

are constructed by simply typing the name of the image

in your command prompt and looking at the response. For

example, typing Image.PACMAN returns

Image('09999:99090:99900:99990:09999:')

It’s not terribly high-resolution, but by fiddling with the

brightness of each individual pixel, you’d be surprised at just

Some Basic Projects 51

how much control you can have when it comes to creating

images and animations.

FIGURE 4.4: Square with embedded X

For instance, creating an image with a bright pixel in the

center, surrounded by gradually dimming pixels, and then

“moving” that bright pixel around, can create a soothing

effect. To see what I mean, download https://github.com/

wdonat/microbit-code/blob/master/chapter4/animation.py,

paste it into your mu window, and flash it onto your board.

You can see a single frame of it in Figure 4.5.

You’ll see by looking at the code that you can create a

list of images, and then use show() to animate that list with

a specific delay. Setting loop equal to True ensures that it

goes on forever.

https://github.com/�wdonat/microbit-code/blob/master/chapter4/animation.py

Getting Started with the micro:bit52

FIGURE 4.5: A single frame of pixel animation

You can also access the values of individual pixels using

display.get_pixel(x, y). This function takes as a parameter

the pixel location (column = x, row = y) and returns an integer

from 0 to 9, 0 being off and 9 being the brightest.

That was a good introduction to creating text and images

on your micro:bit. Now let’s move on to using the buttons.

The Buttons

The buttons labeled A and B on the front of the micro:bit

board are momentary pushbuttons that can be used

as inputs for various reasons: gameplay, responding to

Some Basic Projects 53

prompts, or various other possibilities. They’re accessed with

MicroPython objects button_a and button_b, appropriately

enough, and those objects have a few functions associated

with them: get_presses(), is_pressed(), and was_pressed().

To get a feel for how they work, start a new mu script and

enter the following:

from microbit import *
while True:
 if button_a.is_pressed():
 display.show(Image.HAPPY)
 sleep(500)
 display.clear()
 if button_b.is_pressed():
 display.show(Image.ANGRY)
 sleep(500)
 display.clear()

Save this and flash it to your micro:bit. As you’ve probably

guessed, it simply responds to your button press with either

a happy or an angry face, depending on which button you’ve

pressed.

You can also keep track of things such as button presses

using the get_presses() method. Again, in your mu window,

try the following:

from microbit import *
while True:
 display.scroll("Press the A button a few times.")
 sleep(5000)
 display.scroll(str(button_a.get_presses()))

This is a remarkably simple script—while the board sleeps

for five seconds, it counts how many times you press the A

button, and then displays the count. Accessing the buttons

on the micro:bit is pretty easy—there are only three func-

tions to call, after all. Now let’s take a look at the sensors

on board.

Getting Started with the micro:bit54

The Accelerometer

The micro:bit’s onboard accelerometer is one of the more

nifty things about the board, because you can do a lot with

it. It measures in three axes, which means it can sense move-

ment about the X-axis (horizontal left and right), the Y-axis

(horizontal forward and backward), and the Z-axis (up and

down). You can read individual X-, Y-, and Z-values, or you

can recognize gestures. The micro:bit recognizes eleven dif-

ferent gestures, all as strings: up, down, left, right, face up,

face down, freefall, 3g, 6g, 8g, and shake. Most of these are

self-explanatory, but 3g, 6g, and 8g are not. Basically, these

gestures are registered when the board experiences those

levels of G-force.

The G-force gestures may be difficult to experiment

with (unless you feel like throwing your micro:bit against

the wall), but we can use the seven built-in accelerometer

methods to look at the other values that the device can

send. These methods are get_x(), get_y(), get_z(), get_

values(), current_gesture(), is_gesture(), was_gesture(),

and get_gestures().

Let’s look at a few of those. With mu open and your board

connected, click the REPL icon and connect to your board.

At the prompt, type

>>> accelerometer.get_values()

You should be rewarded with a Python tuple (a comma-

separated list of values in parentheses) of three values—an

X-component, a Y-component, and a Z-component, similar

to this:

(272, 224, -960)

Some Basic Projects 55

Moving the board around and repeating the command

should show you the differing values as you move it. These

values are in milli-g’s—thousandths of a G.

At another prompt, type

>>> accelerometer.current_gesture() == "face up"

This should return either True or False, depending on your

board’s current orientation. However, you may get False,

no matter how you maneuver the board. This may be a

bug in the interactive Python interface; if this happens

to you, don’t despair. Just try the script in the next para-

graph to make sure your accelerometer is working the way

it should.

This command, by the way, is an example of a Boolean

conditional in Python. You could use this command in an

if statement in a Python script, and it will return either

True or False. You could then instruct your micro:bit to

act accordingly. For instance, close your REPL window by

clicking the icon, and enter the following code into your

IDE window:

from microbit import *
while True:
 gesture = accelerometer.current_gesture()
 if gesture == "face up":
 display.show(Image.HAPPY)
 else:
 display.show(Image.ANGRY)

Flash this short program to your board. This script comes

straight from the micro:bit MicroPython documentation on

GitHub, and it simply tells your micro:bit to smile if it’s face

up and frown if it’s not (Figure 4.6).

Getting Started with the micro:bit56

FIGURE 4.6: micro:bit unhappy at not being face up

Another useful function is was_gesture(), which lets you

know if a certain gesture has been performed. To try this

out, type the following into your mu window and flash it to

your board:

from microbit import *
while True:
 display.show(Image.DIAMOND)
 if accelerometer.was_gesture("shake"):
 display.clear()
 sleep(1000)
 display.show(Image.YES)
 sleep(1000)

This script will make the micro:bit display a diamond

shape until you shake it; at that point the screen will clear

for a second and then display a check mark. Fair warning: It

Some Basic Projects 57

may be easier to test this script if you use the external bat-

tery pack or have your micro:bit hooked up to the mi:power

board, because it’s rather difficult to shake the device while

it’s connected to your computer via USB cable.

If you’d like to experiment further with the accelerome-

ter and its readings, you can also use the REPL window. For

instance, entering

>>> display.show(str(acccelerometer.get_x()))

will show the current X-value on the LED display. (Note that

you have to cast the accelerometer.get_x() reading to a

str, since the display.show() function only takes strings,

and the get_x() function returns an integer.) You can also

play with the 3g and other -g functions, but as I said, be

careful about breaking your board!

The Compass

The last sensor on the micro:bit board we want to play

around with is the compass/magnetometer. It works by

detecting magnetic fields and determining their direction.

Before you use it, you’ll need to calibrate it using a built-in

function called—appropriately—calibrate(). You can call

this function interactively at the REPL prompt, and you can

also call it in a script; if it’s called in a normal script, the script

will pause while the calibration takes place. The calibration

itself consists of a little game in which you have to draw a

circle by tilting the board, using a single LED on the display

(Figure 4.7).

Getting Started with the micro:bit58

FIGURE 4.7: Calibrating the compass

Once the circle is drawn and you’ve calibrated the com-

pass, you’re greeted by a smiley face (Image.HAPPY). Try it out:

>>> compass.calibrate()

Once you play the game, you’re done. The device should

stay accurate as long as it’s powered on, but a power cycle

may destroy the accuracy. That’s why it’s a good idea to add

the compass.calibrate() line to any script that requires the

compass—doing so will ensure everything is accurate before

progressing further in the program.

The board has a total of eight compass-related functions:

calibrate(), clear_calibration(), get_field_strength(),

get_x(), get_y(), get_z(), heading(), and is_calibrated()

(Figure 4.8).

Some Basic Projects 59

FIGURE 4.8: Compass functions shown in mu

Of these, compass.heading() is one of the easiest to

understand. Point the top of the compass (where the USB

plug is) toward North and type compass.heading() in your

REPL prompt, and you should be rewarded with a head-

ing in degrees (from 1 through 359). Since you’re pointed

toward North, you should get a reading that hovers around

0 or 360 (depending on how you’re pointing it exactly). If

you get something completely different, recalibrate and try

again. If you still get a value that’s totally off base, check

to see if you’re holding your micro:bit over a big magnet

(Figure 4.9). Since the compass is nothing more than a Hall

effect magnetometer, the presence of a strong magnetic

field will adversely affect your directional readings. It is also

affected by the presence of ferromagnetic materials around

the device, so moving to a different location may solve the

problem. Luckily, magnetometers are not affected much by

electromagnetic (EM) waves, so you shouldn’t have to worry

about your television or microwave screwing up your results.

You may also need to play with your board’s orientation.

One of my boards was accurate when the LED display was

Getting Started with the micro:bit60

facing up. The other, however, was only accurate when the

display was facing down. Your results may vary.

FIGURE 4.9: This will throw your compass readings way off.

get_x(), get_y(), and get_z() give the magnitude of

the magnetic field in each axis, respectively, with the pos-

itive or negative depending on the direction of the field,

and get_field_strength() returns the total magnitude

around the device. All of these readings are returned in nan-

oteslas. Earth’s magnetic field at ground level varies from

about 25 to 65 microteslas, so the return of compass.get_

field_strength() should be between 25,000 and 65,000

(microteslas converted to nanoteslas), assuming you’re not

holding your board over a horseshoe magnet.

The Local Persistent Filesystem

The last not-so-basic feature of the micro:bit I’d like to intro-

duce you to is its filesystem. Yes, you can actually store files

on the board—both text files and even binary files such as

images. There are two caveats to this, however:

 ◩ There is only approximately 30 KB of memory on the

board. To put that into perspective, the image in Fig-

ure 4.10 is 400×300 pixels, and is 31 KB in size. Now,

Some Basic Projects 61

it’s true that you can get a lot of text into 30 KB, but

my point is that you shouldn’t plan on being able to

store War and Peace on your micro:bit.

FIGURE 4.10: A 31 KB JPEG image

 ◩ Files on the board will remain only as long as you

don’t flash the board with a new program. Flashing

the board necessarily wipes all onboard memory, so

any files you have stored will be wiped out. You can

safely turn it off and on again and the files will be

safe, but once you flash it, they’re gone forever.

That being said, you can imagine that the ability to store

files on the board can come in handy. You can write to a text

file for reading during a game, for example, or store the cur-

rent configuration of LEDs as a text array or even an image

file that you’ve converted. There is no directory structure;

files are simply stored as a list. In order to work with the files,

you perform an import os in your script and use the included

functions (open(), listdir(), and so on) to operate on them.

As an example, open your REPL window in the mu editor

and try the following:

>>> import os
>>> os.listdir()
[]

Getting Started with the micro:bit62

You should get an empty pair of brackets ([]) as evi-

dence that nothing is stored on the device. To continue with

experimentation:

>>> with open('test.txt', 'w') as f:
... f.write("Hello, world")
>>> os.listdir()
['test.txt']

If you’re still a Python newbie, I should probably mention

here that after you type the first line starting with with, the

mu interpreter will continue to indent the following lines until

you tell it to stop. To do that, hit the Backspace or Delete

key, and then Enter.

And finally, to read what you’ve written:

>>> with open('test.txt', 'r') as f:
... print (f.read())
Hello, world

 (Again, use the Backspace key to break out of the loop.) If

you’re familiar with Python, you should recognize the open(),

write(), and read() functions, as well as the with() method.

When you call the open() function, the second parameter

determines whether you’ll be reading from ('r') or writing

to ('w') the file, as well as whether it will be stored as text or

binary. The default is text, or 't'; if you want to store binary

as bytes, the syntax uses 'b'. If you want to read bytes from

a binary file, for example, you would use 'rb' as your second

parameter to the open() function.

Obviously you don’t always have to use the os.listdir()

function to see what’s on the device. You may remember that

the Files icon at the top of the mu editor lists the files as well.

However, be aware that this can still be a little buggy; nine

times out of ten when I clicked the Files icon on my computer

(a Mac running the Sierra OS) the interface would freeze and

Some Basic Projects 63

I would have to force-quit the program. os.listdir(), how-

ever, has never crashed for me.

Putting It All Together

Now that you’ve had a chance to play with all the various

parts of the board, it’s time to experiment with putting

things together in some projects. The easiest way to play

with all the buttons and doodads on the board seems to

be, appropriately enough, with games. Let’s start with craps.

You’re probably familiar with the game of dice from either

playing it yourself or watching it in movies. At its core it’s

incredibly simple: roll the dice and bet on the outcome. All

players bet on the same roll—the only thing that matters is

the total of the dice, and each player rolls until he or she rolls

a seven, which is called “sevening-out.”

Now, we don’t have to go over the betting; I’ll leave that

to you. What we can do, however, is simulate the dice rolls,

and—just to make it interesting—enable a way for us to

cheat, using the board’s two buttons.

The basic structure of the script will be as follows:

 ◩ Shake the micro:bit.

 ◩ This will result in two numbers being chosen at ran-

dom, which we’ll display after the roll.

 ◩ Cheat #1: Holding down the A button while you

shake will result in a roll of 7, enabling you to pass

the dice if you don’t want to roll anymore.

 ◩ Cheat #2: Holding down the B button while you

shake will result in a roll of 8 (or whatever you

choose), ensuring that you can bet on a known

outcome.

Getting Started with the micro:bit64

I would like to emphasize here that this is for instructional

purposes only, and is probably not a good way to study sta-

tistics and probability. It is all for fun, after all.

So let’s write this simple program. Open up mu on your

computer and enter the following:

from microbit import *
import random
random.seed()

These lines import the microbit libraries and the ran-

dom number generator. The random.seed() line is neces-

sary, because it “seeds” the random number generator. This

ensures that the numbers chosen will indeed be random (or

at least as random as is possible without invoking quantum

computations). Let’s continue:

def roll_dice():
 a = random.randint(1, 6)
 b = random.randint(1, 6)
 numbers = [str(a), str(b)]
 return numbers
def roll_seven():
 a = 4
 b = 3
 numbers = [str(a), str(b)]
 return numbers
def roll_eight():
 a = 5
 b = 3
 numbers = [str(a), str(b)]
 return numbers
def show_roll(dice):
 for i in range(0, len(dice)):
 display.clear()
 display.show(dice[i])
 sleep(1000)
 display.show(Image.YES)

These are just three functions that simulate dice rolls

and one that shows what was rolled. Which dice roll gets

Some Basic Projects 65

called will depend on whether a button is being held down

during the shake. Each function selects a value for each die,

and then returns a list of those two numbers, converted to

strings for easy displaying. Finally, the show_roll() func-

tion takes a list, dice, as its parameter. It simply shows each

member of the list in order, twice, to make sure you can see

the roll.

Now comes the main portion of the program:

display.show(Image.YES)
while True:
 if not accelerometer.was_gesture("shake"):

continue
 if button_a.is_pressed():

roll = roll_seven()
show_roll(roll)
continue

 if button_b.is_pressed():
roll = roll_eight()
show_roll(roll)
continue

 roll = roll_dice()
 show_roll(roll)

As you can see, this is a very simple program. (You can

download it at https://github.com/wdonat/microbit-code/blob/

master/chapter4/craps.py.) The default image shown on the

LED screen is the YES symbol (a check mark). As soon as a

shake is detected, the device checks to see if a button was

held down as well, and then calls the appropriate function,

which clears the screen and displays the die values. Then it

waits for a second and returns to the default image.

Lastly, let’s just write a short script that walks through

the available functions on the device, just to make sure we

know how to access them and that our device is working

properly. Again, this should be a simple program:

from microbit import *
compass.calibrate()

https://github.com/wdonat/microbit-code/blob/master/chapter4/craps.py

Getting Started with the micro:bit66

Now you’re ready for the function that will go through all

of the functionality of the board:

def iterate_thru():
 display.show(Image.ALL_ARROWS)
 display.clear()
 display.scroll("Press A")
 while not button_a.is_pressed(): # see text
 continue
 display.show(Image.ARROW_W) # see text
 sleep(1000)
 display.scroll("Press B")
 while not button_b.is_pressed(): # see text
 continue
 display.show(Image.ARROW_E) # see text
 sleep(1000)
 display.clear()
 x = str(accelerometer.get_x())
 y = str(accelerometer.get_y())
 z = str(accelerometer.get_z())
 a = x + " " + y + " " + z # see text
 display.show(a)
 sleep(1000)
 display.clear()
 display.scroll(str(compass.heading()))
 sleep(1000)
 if accelerometer.is_gesture("face up"):
 display.show(Image.HAPPY)
 return

And finally, the main loop of the program itself:

while True:
 display.clear()
 if button_a.is_pressed():
 iterate_thru()

You can download this program at https://github.com/

wdonat/microbit-code/blob/master/chapter4/functions.py.

While simple, there are a few things worth mentioning in

this program, delineated by the see text comments:

 ◩ The while not loops make the board wait until but-

ton A (or B) is pressed by entering a loop; as long as

https://github.com/�wdonat/microbit-code/blob/master/chapter4/functions.py

Some Basic Projects 67

the button is not pressed, the loop continues indefi-

nitely. The button press breaks it out of the loop and

allows the program to continue.

 ◩ Image.ARROW_W and Image.ARROW_E are probably

self-explanatory, but in case you weren’t sure: they

point to the left and the right, respectively, as if you

were looking at a map. Remember, the board thinks

that the USB port is on the North side, so it is pru-

dent to continue that framework with an East and a

West arrow. Since there is no ARROW_RIGHT or ARROW_

LEFT, these are what you would use instead.

 ◩ Finally, the assignment of the x, y, and z strings to

the a string is due to the unique requirements of

display.scroll() and display.show(). Both require

strings, or images, or lists of images. A list of strings

won’t work. For that reason, we’ve combined the x,

y, and z strings into one string, which can then be

scrolled through.

That concludes our basic introduction to programming

the integral parts of the micro:bit with Python. In the next

chapter, we’ll dive into interfacing with the board using C++

and the native tools that are available for that.

5

The mbed Operating System

Now that you’re familiar with MicroPython and using the

mu interface to interact with your micro:bit board, I’d like to

sweep the rug out from under you and introduce the ARM

mbed interface.

I know, it’s harsh, and I can hear some of you screaming

from here: “Wait! I like Python! Why do I have to learn some-

thing different?” The reason lies in the fact that mbed is the

actual operating system that is running on the micro:bit’s

ARM chip, and in order to do really cool and effective things

with that chip, you’ll need to interact with the operating

system in the most efficient way possible: with mbed and

its language of choice, C++. Don’t get me wrong—you can

still use Python and mu to do many, many things with your

board without an mbed account; it’s just that learning to use

mbed will enable you to do many, many more.

mbed OS 5 (the current version) is an operating system

that is specifically designed to run on ARM microcontrol-

lers and enable them to interact with the Internet of Things

(IoT). If you’ll remember, interfacing with the IoT is one of the

stated goals of the micro:bit and its foundation. mbed was

designed by ARM and its partners, and as of this writing it

Getting Started with the micro:bit70

works on well over a hundred different ARM-based boards.

Interacting with it is simple and will make you feel right at

home. After applying for a developer account, you can use

the web-based IDE to write your programs, compile them,

and then flash them to your micro:bit board. Yes, you’ll need

to use C++, but it may not be as bad as you fear. I’ll walk you

through the worst of it, and remember that if you decide

to continue programming, C++ is an excellent language to

know. You can also download the mbed tools to your com-

puter if you prefer to work that way. But installing and using

those tools is slightly beyond the scope of this book, so

we’re going to stick with the online version of the compiler.

Getting an Account

Let’s start with getting an mbed developer account, which

you’ll need to have in order to use the IDE. Start by pointing

your browser to https://developer.mbed.org/ and clicking Log

In/Signup at the top of the screen. Now click the big Sign Up

button in the middle of the screen and follow the prompts to

create a developer account (Figure 5.1). Don’t worry—every-

thing is free.

Once you have an account, you’ll be sent to your dash-

board, which is where you’ll receive notifications of code

updates and blog entries by the mbed team, as well as infor-

mation about any teams you may be involved in, your repos-

itories, and outgoing pull requests. With your new account,

your dashboard should be empty, with the possible excep-

tion of some notifications from the mbed team.

To start writing code, click the Compiler button next to

your username in the top menu bar. The mbed compiler

workspace will open in a new window (Figure 5.2).

https://developer.mbed.org/

The mbed Operating System 71

FIGURE 5.1: Signing up for an mbed developer account

FIGURE 5.2: The mbed compiler workspace

If you’ve worked with compilers and IDEs before, this

setup may seem familiar, with the code/source tree on the

left and the main coding window in the middle.

Getting Started with the micro:bit72

The first thing you’ll need to do is let the compiler know

what board you’re going to be developing for by selecting a

device. You’ll notice that at the top right of the window it says

No Device Selected. That’s actually a button—click on it and a

window will pop up, enabling you to select an mbed-enabled

platform. Click the Add Platform button and select the BBC

micro:bit on the next page. To make it easier to find, you can

filter your search on the left of the page and check the box next

to BBC Make It Digital Campaign under Platform Vendor. Click

on the picture of the board, and you’ll be taken to a description

page for the micro:bit. Scroll a little way down the page and

click the orange Add To Your mbed Compiler button on the right.

Switch back to your compiler page for a moment, and

click the No Device Selected button again. You’ll now see

that the micro:bit is available as a device. Choose Select

Platform, and back on the compiler page you’ll see that the

micro:bit is now showing as your selected device.

Switch back to the description page for the micro:bit for

a moment. Beneath the pinout diagram of the board are sev-

eral code examples for the board that you can immediately

import into your compiler and play with, ranging from the

usual microbit-hello-world, to more complicated code for

advanced users.

Let’s start with the microbit-hello-world program. Click

the Import Program button next to the name of the code. A

new window to your compiler will open, and a pop-up in the

center will ask you for details about importing the program

(Figure 5.3).

Leave everything set to the defaults and click Import. You’ll

see that microbit-hello-world is now part of the code tree

on the left, and the main window is populated with a microbit

folder and a main.cpp file. Double-click the main.cpp file, and the

code window should now show you the file.

The mbed Operating System 73

FIGURE 5.3: Importing microbit-hello-world

It’s really a simple program—only seventeen lines if you

don’t count the extensive comments at the head of the pro-

gram. All the important, behind-the-scenes code is included

in the microbit folder. In your main.cpp file, the line #include

"MicroBit.h" pulls in all the relevant code. (See the “Getting

More Help” sidebar for help with learning C++ code.)

So let’s flash this code to your board. Make sure your

board is connected to your computer, double-check that

the BBC micro:bit is still displayed as your compilation tar-

get at the top right of your window, and click Compile in

the menu bar of your workspace. A status window will pop

up, letting you know what’s going on, and then either a hex

file will download automatically to your default downloads

folder, or you’ll get a download prompt. You’ll also notice

that the status window at the bottom of the screen reads

Success! in the Compile Output tab. If you have errors or

warnings when compiling code, this window is where they’ll

display so you can work your way through them as you

debug. Once you’ve downloaded the hex file to your com-

puter, drag and drop it onto your board like you did before,

and your micro:bit should scroll “HELLO WORLD! :)” across

the LED display once.

Getting Started with the micro:bit74

Getting More Help
If your only exposure to programming thus far has been
Python, I understand if you’re a little apprehensive about pok-
ing around the micro:bit with C++. It can seem a little daunt-
ing. However, if you’ve been playing around with Python, you
should already have a grasp of how programming languages
work and the logic involved in programming, which is—in my
opinion—half of the battle. Getting the logic down for a pro-
gram is the hard part. After that it’s just a matter of getting
it into the correct syntax for your situation. And though this
book is not the place to familiarize yourself with C++, I’ll do
what I can to make it easy for you.

The first suggestion I have is to pick up a good Learn C++ book—
there are literally thousands of them out there. I’m partial to
C++ All-in-One For Dummies, by John Paul Mueller and Jeff Cog-
swell (For Dummies, 2014), but choose one that works for you.

Let’s talk about ways to immediately learn more about
classes and functions you’ll be using. These are similar to
Python’s import statements. Various functions and external
pieces of code can be included in another file, often ending
in .h, and the #include statement makes that code avail-
able to your main.cpp program. We won’t be creating these
.h files (called header files) here, but you will be #including
them from the mbed libraries.

If you’ve imported the mbed_blinky example code into your
compilation workspace, click the plus sign next to the mbed
folder to view its contents. You’ll be greeted with three
new folders of documents: Classes, Structs, and Groups.
Expanding any of these will give you more information than
you’re probably ready for about the programming involved
behind the scenes in the micro:bit. However, this is also a use-
ful place for documentation if you don’t know what program-
ming structure to use or how to make use of it. In that sense,
it’s similar to Linux’s man pages, or the help() functionality
in Python and the REPL interface in mu.

The mbed Operating System 75

In Classes, for example, click the DigitalOut document, since
the DigitalOut class is used in the code in main.cpp. You’ll see
the class reference, how to use it (#include <DigitalOut.h>),
and its functions and parameters (see the following graphic).

Following the introduction, there’s a ton of information,
including examples, on how to call the class, and this is per-
haps the best way to get acquainted with the C++ code you’ll
be using. For example, scroll down and take a look at the Con-
structor and Destructor Documentation. If you look at your
main.cpp code again, you’ll see that line 8 reads

DigitalOut col0(P0_4, 0);

which corresponds to the DigitalOut constructor that takes
a PinName and an int as parameters. This tells you that line 8
is creating a DigitalOut class with an initial value of 0 con-
nected to the pin with PinName P0_4.

Getting Started with the micro:bit76

Obviously, going into all of the functions and formats in the
micro:bit source code is beyond the scope of this book, but
just know that there is help and documentation available. And
in all of the projects in this book, I’ll do my best to make sure
you know what exactly you’re programming and how and why
it does what it does.

Welcome to C++!

When you’ve got that working—and you’re tired of watch-

ing it—let’s try another, slightly more complex piece of code:

the micro:bit “blinky.” If you’ve ever used an Arduino, you’re

probably familiar with the Blink sketch that’s often used as

a Hello, World introduction to the programming environment

and to ensure that the board is connected and working prop-

erly. The mbed IDE has a similar program, called blinky, that

can be downloaded and compiled for any of the 117 different

boards that are running the mbed OS.

Unfortunately, the default program won’t work if you

compile it for the micro:bit, and that’s because the micro:bit

doesn’t have a single LED that you can flash on and off. Rather,

all of the LEDs on the board are part of the LED matrix, so you

have to address an individual LED on the board in a slightly

different way. Back on the micro:bit description page, locate

the microbit_blinky program description. Click on it, and then

click Import Into Compiler on the next repository page.

When you’ve imported the program into your compiler,

click on main.cpp and take a look at the program. Again, it’s a

simple program, but the comments illustrate how you have

to interface with the LED matrix in order to address just one

LED. It’s a bit more complicated than simply sending a digital

HIGH or LOW to a single LED—at least at first. However, once

The mbed Operating System 77

you’ve set column 0 to be permanently at ground, the code

does break down to exactly that—sending a digital signal to

the chosen LED (in this case, myled, defined as P0_13 in line 10).

This is the procedure you’ll follow for your future micro:bit

programs. We’ll use the micro:bit samples program as a tem-

plate, and just edit the main.cpp file as we need to.

yotta
Now that you’re familiar with the online compiler for mbed,

I’d also like to introduce you to yotta, mbed’s command-line,

Python-based tool that allows you to develop both source

code and reusable modules on your local system. You can

use it to build tools for your local Unix-based machine, as

well as any of mbed’s ARM-based boards; all you have to do

is specify the build target when you compile your code. We’ll

be using the web-based tool for the remainder of this book,

but I feel I’d be remiss if I didn’t at least quickly walk you

through installing and using yotta, since it’s really a pretty

cool tool. It’s also extremely community-based; mbed

states that the most important part of yotta is the ability

to publish your module to make it available for other users.

You can’t publish executables, since it isn’t really designed

for that, but the source code you publish can be compiled

for whatever target another user wishes.

As you read through this section, please keep in mind

two things. First, yotta is very much a tool in beta. Things are

likely to break, and it can be difficult to set up a working build

environment. Second, with that being said, it is not necessary

for you to get this working in order to continue with the book.

All future projects can be done using the web-based inter-

face, so if you can’t get yotta working or don’t want to spend

the time on it, that’s perfectly all right. You can do all sorts

of cool things with your board without ever touching yotta.

Getting Started with the micro:bit78

Installing yotta

Installation differs, obviously, depending on your operating

system.

Windows

It’s important to remember that yotta requires Python to

run, and Windows (still!) doesn’t come with Python prein-

stalled. If you’ve skipped all the previous parts of this book

and still haven’t installed Python, head over to http://python

.org/downloads and download and install the correct version

for your system. You need at least version 2.7.9 for yotta to

work. The all-in-one installer does install Python for you,

however, so you can go that route if you prefer.

To install yotta using the all-in-one tool (definitely the

easiest option) point your browser to https://github.com/

ARMmbed/yotta_windows_installer/releases and download the

yotta_install_v0.2.3.exe file. Double-click the downloaded

file and follow the prompts. It’ll take a while to install, but

when it’s done you’ll have a Run Yotta icon on your desk-

top. Double-click it to bring up the command-line interface

(Figure 5.4).

FIGURE 5.4: Windows yotta interface

http://python.org/downloads
https://github.com/ARMmbed/yotta_windows_installer/releases

The mbed Operating System 79

macOS

The Mac version of yotta is currently at version 0.0.4, and it can

be found at https://github.com/ARMmbed/yotta_osx_installer/

releases/tag/v0.0.4. Download the .dmg file and drag the yotta

app into your Applications folder from within the expanded

.dmg folder. Once it’s finished copying and verifying (warning:

this can be a looooong process so go get yourself a cup of

coffee or tea while it does this), double-click the yotta icon in

your Applications folder. You’ll be greeted by a terminal-like

window (Figure 5.5).

FIGURE 5.5: The macOS yotta window

Linux

A Linux installation can be done with your package manager

and Python’s pip tool. First make sure you have the correct

dependencies on your system. On Debian and Ubuntu, update

your package list and then use sudo apt-get install to install.

 ◩ python-setuptools

 ◩ cmake

https://github.com/ARMmbed/yotta_osx_installer/releases/tag/v0.0.4

Getting Started with the micro:bit80

 ◩ build-essential

 ◩ ninja-build

 ◩ python-dev

 ◩ libffi-dev

 ◩ libssl-dev

 ◩ srecord

Then run sudo easy_install pip to install the pip tool.

Fedora is a similar process. Install the dependencies:

sudo yum install python-pip cmake ninja-build python-
devel libffi-devel openssl-devel srecord clang
sudo yum groupinstall "Development Tools" "Development
Libraries"

The version of pip you get here is most likely out of date,

so update pip with

sudo yum remove python-pip
curl -o get-pip.py https://bootstrap.pypa.io/get-pip.py
sudo python get-pip.py

Now that you’re ready, use pip to install yotta:

pip install yotta

After the Installation: Customizing yotta

Once yotta is installed, you’ll need to set up a cross-

compilation environment so you can develop for your board.

What this means, basically, is that after you write your code,

you tell the compiler that you don’t want to compile the

code to run on the current computer (ordinarily the default

behavior). Rather, you want the compiler to compile the

code with a different target in mind—the micro:bit board.

Again, this process differs slightly depending on your host

system’s OS.

The mbed Operating System 81

Windows

The first thing you’ll need to install on your Windows machine

is the gcc compiler. You can download it from

https://launchpad.net/gcc-arm-embedded/4.9/4.9-2015-
q2-update/+download/gcc-arm-none-eabi-4_9-2015q2-
20150609-win32.exe

After it’s installed, you’ll need to add the bin/ subdirec-

tory from where you installed it to your environment path.

This differs slightly depending on your version of Windows,

but in general you’ll right-click Computer and select Proper-

ties. Click Advanced System Settings, choose the Advanced

tab, and click the Environment Variables button. Then select

Path from the System Variables window (Figure 5.6) and add

the /bin subdirectory to the end of the line, using a semico-

lon first with no spaces. Save everything and exit.

FIGURE 5.6: Editing your path variable

https://launchpad.net/gcc-arm-embedded/4.9/4.9-2015-q2-update/+download/gcc-arm-none-eabi-4_9-2015q2-20150609-win32.exe
https://launchpad.net/gcc-arm-embedded/4.9/4.9-2015-q2-update/+download/gcc-arm-none-eabi-4_9-2015q2-20150609-win32.exe
https://launchpad.net/gcc-arm-embedded/4.9/4.9-2015-q2-update/+download/gcc-arm-none-eabi-4_9-2015q2-20150609-win32.exe

Getting Started with the micro:bit82

The last thing you’ll need to do before compiling is to set

your target. Close and reopen your yotta build command

windows (to ensure the cross-compiler is available) and type

the following:

yotta target bbc-microbit-classic-gcc

Because the micro:bit library isn’t hosted by mbed, you’ll

need to download it from GitHub. To download the library,

enter the following:

yotta install lancaster-university/microbit

The first time you do this, you may need to log in to your

mbed developer account, so make sure you’ve verified your

email address beforehand, as it may need to be verified

before you can download the library.

You need to do this only once; all future commands will

use that information when compiling.

macOS

As with Windows, to cross-compile, you’ll need the arm-

none-eabi-gcc cross-compiler. The easiest way to install

this is using homebrew (see the sidebar “Homebrew on the

Mac”). First add (tap) the ARMmbed homebrew package

repository with

brew tap ARMmbed/homebrew-formulae

Then install the compiler with

brew install arm-none-eabi-gcc

Finally, set the target for the compiler to be your micro:bit

board. Close and reopen any yotta windows you have, and

then enter

yotta target bbc-microbit-classic-gcc

The mbed Operating System 83

Follow that with

yotta install lancaster-university/microbit

and you should be ready to go. The first time you do this, you

may need to log in to your mbed developer account, so make

sure you’ve verified your email address beforehand, since

it might need to be verified before you can download the

library. You’ll need to do this only once—yotta will remember

your info when you download libraries in the future.

Homebrew on the Mac
As a recent convert to the homebrew package management
system, I thought a quick note about it might be worth
something.

I’m mainly a Linux guy; I do all of my development work, both
hobby and professional, in various flavors of Linux. However,
my personal computer is a Mac, and I’ve always wished that
I could use Linux’s aptitude package manager on my Mac.
It can’t be beat—need a software package? Just type sudo
apt-get install <package> and aptitude will find the
package, determine its dependencies, and install everything
for you. I wasn’t aware of anything similar for the Mac.

Until I found homebrew. I’d heard of it but had never tried it.
Now, I won’t go back. It’s the package manager that macOS
needed, and it’s very easy to install and use. First, point your
browser to http://brew.sh, where you can read all about it. But
installing it is a simple command-line entry:

/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/
install/master/install)"

http://brew.sh

Getting Started with the micro:bit84

Once it’s installed, you can add repositories with brew tap
<repository name>, and then install software packages from
them with brew install <software package>. It’s almost
as easy as aptitude and yum on Linux systems.

The only issue I had when first installing it was that I didn’t
have Ruby installed on my system (it was an older version of
the Mac operating system), and you need to have Ruby to
install homebrew. Luckily, Ruby 2.0 ships with OS X El Capi-
tan, Yosemite, Mavericks, and Sierra, and Ruby 1.8.7 ships with
Mountain Lion, Lion, and Snow Leopard.

Obviously, not all software packages are brew-installation
compatible, but it’s a nice surprise when you find one that
is. One simple command, and it’s installed for you—almost as
good as a Linux box.

Linux

As with Mac and Windows, you’ll need to install the arm-

none-eabi-gcc compiler in order to cross-compile for your

board. On systems other than Ubuntu, you can do this with

a simple

sudo apt-get install gcc-arm-none-eabi

On Ubuntu, however, you’ll need to use a package that’s

maintained by ARM, gcc-arm-embedded. First, remove the

built-in package if it’s installed on your system with this

command:

sudo apt-get remove binutils-arm-none-eabi
gcc-arm-none-eabi

Then add the correct repo:

sudo add-apt-repository ppa:team-gcc-arm-embedded/ppa

The mbed Operating System 85

And then update and install:

sudo apt-get update
sudo apt-get install gcc-arm-embedded

And finally, you’ll need to set your target board with yotta

and download the library. Open a new yotta window and

enter

yotta target bbc-microbit-classic-gcc

followed by

yotta install lancaster-university/microbit

The first time you do this, you may need to log in to your

mbed developer account, so make sure you’ve verified your

email address beforehand, since it might need to be verified

before you can download the library. Everything you need is

now on your machine, and you’ll need to do this only once;

the next time you open yotta and install the lancaster-

university libraries, no login will be needed.

Building an Executable—All Operating Systems

Now that you’ve got yotta installed and customized, let’s

use it to build a simple Hello, world application. Create a new

directory and cd into it with this:

mkdir hello_world
cd hello_world

Now initialize a new project with

yotta init

You’ll need to answer some questions during the initial-

ization process. Leave most of them with the default answers

(signified by being enclosed in <> brackets) and answer what

you need to (Figure 5.7). Make sure, however, that you type

yes when asked if this project is an executable.

Getting Started with the micro:bit86

FIGURE 5.7: Initializing an executable

Make sure you’re targeting the correct board by typing

yotta target

You should be greeted with this:

bbc-microbit-classic-gcc 0.2.3
mbed-gcc 0.1.3

If you see

bbc-microbit-classic-gcc,* missing

make sure you’ve downloaded the microbit library from

 lancaster-university before continuing.

Finally, install the libraries you’ll need with

yotta install lancaster-university/microbit

Now that the project has been initialized, you’re ready

for some simple code. cd into the source/ folder inside your

The mbed Operating System 87

hello_world directory and create a new file called main.cpp.

Put the following into main.cpp:

#include "MicroBit.h"
MicroBit uBit;
int main()
{
 uBit.init();
 uBit.display.scroll("Hello, world!");
 release_fiber();
}

Save it and close it, and then cd back into your main

hello_world directory. Enter

yotta build

and let the project compile. When it’s finished, the hex file

you need will be inside the build/ directory, at /build/

bbc-microbit-classic-gcc/source, and will be named

hello_world-combined.hex. Transfer that hex file to your

micro:bit, and be amazed at the “Hello, world!” scrolling

across the display! You’ve just compiled your first C++ pro-

gram for the micro:bit!

Using a Local Compiler

You may not want to use yotta every time you compile a

program for your micro:bit—as I mentioned, it’s very much

in beta at the moment and is constantly changing. Luckily,

if you’re running Windows, you can also use Eclipse or Net-

Beans as IDEs on your local machine to take care of creat-

ing and compiling your micro:bit code. I’ll briefly walk you

through the process of setting up NetBeans to be your local

compiler. If you’re using Linux or Mac, sorry, but you’re out of

luck—getting NetBeans to recognize yotta as a build tool on

those platforms is apparently impossible.

Not so on Windows, however: if you haven’t done so

already, download and install the NetBeans IDE from

Getting Started with the micro:bit88

https://netbeans.org. It requires the Java JDK version 8, so

if you don’t have that installed, you can get both the JDK

and the current version of NetBeans from www.oracle.com/

technetwork/java/javase/downloads/index.html.

If you download this IDE, it does not come with the C/

C++ plugins installed, so you’ll need to install those plugins

before you continue.

Once everything is installed, start up NetBeans. You’ll need

to add C:\yotta (your installation directory) to the system

path by editing your system’s environmental variables (see

Figure 5.6 earlier). Then open the Options window in NetBeans,

click the C/C++ tab, and click Add to add a new tool collection.

In the window that pops up, enter C:\yotta\gcc\bin in the

Base Directory field, Unknown in Tool Collection Family, and

ARM microbit in Tool Collection Name (Figure 5.8).

FIGURE 5.8: Setting the base directory

https://netbeans.org
http://www.oracle.com/technetwork/java/javase/downloads/index.html

The mbed Operating System 89

Then you’ll need to manually add the locations of the

compilers. Take a look at Figure 5.9 and copy the locations

you see in the text boxes.

FIGURE 5.9: Setting compiler locations

Now restart the NetBeans interface. When it’s open

again, go to File > New Project and select a C++ project with

existing sources. Then navigate to the hello_world\build\

bbc-microbit-classic-gcc folder. Set the tool collection to

ARM_microbit and click Finish. You’ll now be able to edit the

main.cpp file and clean and compile the project!

I know, that’s a lot of work. Don’t worry—as I said, we’ll use

the online compiler in the rest of the book. If you did manage

to get all of this working, however, feel free to use your local

compiler instead. In the next chapter, we’ll take a look at

interfacing with the micro:bit using Bluetooth and the radio.

6

Interfacing with the GPIO Pins

Now that you’re familiar with the micro:bit board and its

onboard parts, we’ll look at interfacing with the GPIO pins

on the edge of the board. There are several ways to con-

nect to them, the most basic way involving alligator clips

and banana plugs.

As you’ve probably noticed, several of the pins on the

edge of the micro:bit are both larger than the other pins and

are also connected to holes in the board. This enables you

to attach either alligator clips (Figure 6.1) or banana plugs

(Figure 6.2) to the board for basic interaction. I won’t go into

the specifics—readers are more than likely acquainted with

FIGURE 6.1: Alligator clips

Getting Started with the micro:bit92

these basic interfaces. Just be aware that if you don’t have

any add-on parts or additional breakout boards, you can use

these simple parts to do some cool things with your board.

All of the functions I discuss in the following sections will

work no matter how you connect to the board’s GPIO pins.

However, I imagine you’ll want to add to the basic function-

ality made possible with clips and plugs, so read on.

FIGURE 6.2: Banana plugs

The GPIO Pins and the Edge Connector
Breakout Board

When you’ve worn out the novelty of basic connectivity, I

think it’s time to take a look at extending the board’s capa-

bilities with some add-on parts. I’d like to introduce you to

the edge connector breakout board.

I mentioned this board briefly in the beginning of the

book. It’s available from several online retailers, and should

cost you less than $10, including shipping. It has a slot on the

side into which you slide your micro:bit board, and it maps all

of the “pins” on the edge of the board to actual GPIO headers

Interfacing with the GPIO Pins 93

to which you can attach jumper wires (Figure 6.3). Note the

position of the board in the figure—the front of the board

faces up, in the same direction as the GPIO pins. It is import-

ant to know that for the edge connector board as well as for

the motor controller board, the orientation of the board is not

important when it comes to accessing the pins. The pins are

paired; both headers in column 3, for instance, access pin 3

on the board, no matter which direction the board is facing.

It’s also worth noting that the rows of pins, although in

the same order as the pins on the edge of the board, do

FIGURE 6.3: micro:bit inserted into edge connector board

Getting Started with the micro:bit94

not follow a numerical sequence—it doesn’t start with row

0, followed by row 1, 2, 3, and so on. Rather, the first pair is

referred to in code as pin3, the second as pin0, and so on.

See Table 6.1.

TABLE 6.1: GPIO header pin descriptions

ROW LABEL NAME DESCRIPTION

20 SDA I2C SDA—magnetometer/
accelerometer (unsoldered)

19 SCL I2C SCL—magnetometer/
accelerometer (unsoldered)

0V 0V GND

0V 0V GND

3V 3V 3V

16 DIO Gen. purpose

15 MOSI Serial—Master Out/Slave In

14 MISO Serial—Master In/Slave Out

13 SCK Serial—Clock

2 PAD2 Gen. purpose

12 DIO Gen. purpose

11 BTN_B Button B—goes low on press

10 COL3 LED matrix column 3

9 COL7 LED matrix column 7

8 DIO Gen. purpose

1 PAD1 Gen. purpose

7 COL8 LED matrix column 8

6 COL9 LED matrix column 9

5 BTN_A Button A—goes low on press

4 COL2 LED matrix column 2

0 PAD0 Gen. purpose

3 COL1 LED matrix column 1

Interfacing with the GPIO Pins 95

In front of the header pins, at the very edge of the board,

is an area that has been set aside for prototyping, with a

positive (3V) rail, a GND rail, and some unconnected pads

that can be attached to whatever you like. This makes it

easy to connect switches or additional sensors, particularly

if you decide to solder some additional header pins to these

pads. If you plan on using I2C in your projects at all, I highly

recommend soldering some headers to pins 19 and 20. Those

two pins are located at the end of the row of headers, rather

than inside the prototyping area.

To give a quick introduction to accessing the pins in code,

let’s go ahead and attach a multimeter to some pins and

see what happens in real time as we send commands. Grab

a multimeter and set it to either Automatic (if you have a

meter that supports it) or DC 1.5V. Attach an M/F jumper

wire to pin 0 (the second pin from the left) and another M/F

wire to the last GND pin on the right. Attach your multimeter

positive and negative leads to those wires. Make sure your

micro:bit board is attached to your computer’s USB port so

you can both power your board and flash programs to it.

Now, on your computer, open up mu, start a new sketch,

and press the REPL button to enter an interactive session

with your board. Watch your multimeter screen as you type

the following:

>>> pin0.write_digital(1)

Then press Enter/Return. You should get a reading of

about 3.23V (Figure 6.4).

Now type:

>>> pin0.write_digital(0)

Getting Started with the micro:bit96

FIGURE 6.4: Turning on pin 0

and press Enter/Return. Your multimeter should read 0V again.

If you repeat this experiment—turning on a pin and measuring

the voltage—with pin 8, for instance, you should get identi-

cal results. You’re basically turning those pins on and off by

sending digital 1’s and 0’s to them. Obviously, this can be done

within a script as easily as it can be done interactively.

Now hook up your positive jumper wire to pin 5 (the pin

for Button A). Your multimeter should read about 3.23V. Press

the A button, however, and the voltage should immediately

drop to zero, just as it says in the chart. You can repeat the

experiment with pin 11 and Button B.

analog_read() and analog_write()

Now that you’ve used write_digital(), let’s take a look at

read_analog() and write_analog(). These functions allow you

to read the value of an analog device, like a potentiometer,

Interfacing with the GPIO Pins 97

for example, or to output an analog value rather than a sim-

ple digital 1 or 0. There’s an easy way to display that value as

well—by using an LED hooked up to another pin.

For this experiment, you’ll need a potentiometer and an

LED. Any color LED will work, so just grab whatever you’ve

got lying around. If you don’t have an extra LED lying around,

go find/buy/get one, and resolve to never be without a spare

LED in your workshop again.

Using jumper wires, connect the pot’s GND post (if the

pot’s shaft is pointing toward the ceiling and the pins are

facing you, the GND pin is normally the pin on the left) to

one of the micro:bit’s GND pins. Connect the pot’s input pin

(either the middle pin or the one on the right, depending on

the pot) to pin 1 on the edge connector board. Connect the

other unused pin on the potentiometer to the micro:bit’s

3V pin. Finally, connect an LED to the micro:bit’s GND pin

and pin 2. Everything should look like it does in Figure 6.5.

FIGURE 6.5: Diagram of LED/potentiometer setup

Getting Started with the micro:bit98

Start a new sketch in mu and enter the following code:

Now type:

>>> pin0.write_digital(0)
from microbit import *
pin2.write_analog(0)
while True:
 pin2.write_analog(pin1.read_analog())

Flash the sketch to your micro:bit.

Pulse Width Modulation
When you look at your LED’s brightness, you may notice that
it’s not so much getting brighter and dimmer as it is flashing
more quickly or more slowly, depending on the position of the
pot. That’s because the micro:bit is actually using something
called pulse width modulation (PWM) to light the LED and
change its brightness level.

Pulse width modulation is a way of producing analog effects
using digital means. Many electronic devices you may be
familiar with (such as the micro:bit, the Arduino, and the
Raspberry Pi) are unable to send varying degrees of voltage
out through a GPIO pin—they can only turn it on or off. In
order to simulate various voltage levels, therefore, they vary
the duty cycle of the pin using a square wave.

Interfacing with the GPIO Pins 99

In other words, PWM involves turning a digital pin on and off
very quickly. The more time the pin is on over the course of a
second, the longer the duty cycle and the higher the simu-
lated voltage. When you see the LED flashing, you’re actually
seeing the duty cycle pulses the board is sending through pin
2 to the LED.

PWM isn’t just used to light LEDs; one of its other more com-
mon uses is to control servomotors. Varying duty cycles are
used to position the servo at different points along its range
of travel (or to control its speed and direction, in the case of
a continuous-motion servo). Luckily, most electronic devices
that use PWM use libraries (Arduino’s Servo.h library and
Raspberry Pi’s PiGPIO library, for example) that take care of
the actual duty-cycle programming for us behind the scenes.

The micro:bit is no exception.

Assuming you’ve got everything wired correctly, your LED

should immediately light up, though it may be rather dim

depending on your potentiometer’s position. Play around

with the pot’s setting, and you should see the LED change

brightness depending on the position of the pot.

Looking at the script, it should be pretty self-evident

what’s going on here. We start writing a 0 to pin 2 to make

sure it’s completely off. Then we read the value of the poten-

tiometer (or the voltage it’s passing, to be technically cor-

rect) and send that voltage to the LED. The more voltage the

pot is passing, the brighter the LED.

If you’re interested in the actual values being emitted by

the potentiometer, you can try the following script:

from microbit import *
while True:
 text = str(pin1.read_analog())
 display.scroll(text)
 sleep(500)

Getting Started with the micro:bit100

For this script, remove the LED from the circuit. Connect

the pot’s ground pin to the micro:bit’s GND pin, the pot’s

input pin to pin 1, and the pot’s other pin to the micro:bit’s

3V pin (Figure 6.6.) When you flash the script to your board,

it will display the pot’s current value every half second. The

micro:bit has a 10-bit analog-to-digital converter on board,

so you should see values ranging from around zero all the

way to 1023 at the other end of the pot’s travel.

Now that we’ve looked at read_analog(), write_analog(),

and write_digital(), there’s one more function in that

group we should investigate—read_digital(). Just as you’d

suspect, this function is what you’ll use to read from sen-

sors such as switches that send a simple ON/OFF signal to

the board. If you happen to have an old switch lying around,

it’s a perfect way to test read_digital(). If not, you’ll just

have to trust me on this one. Hook up a simple single-pole,

FIGURE 6.6: Reading the potentiometer’s value

Interfacing with the GPIO Pins 101

single-throw (SPST) toggle switch to pin 16 and one of the

3V pins. With the switch open, typing

>>> pin16.read_digital()

on the mu REPL command line should return 0. Running the

same command with the switch closed will return a 1. Quite

simple. In the same vein, the is_touched() function is inter-

esting. You don’t need a switch to play with this one, as your

body acts like a switch. Connect one of your jumper wires

to pin 1 and the other to a GND pin. If you hold both wires

in your hand,

>>> pin1.is_touched()

will return a 1, whereas leaving one wire untouched will return

a 0. Connecting the pin to ground (through your body) sets

the return value to 1.

I2C

One of the things that hobbyists may find attractive about

the micro:bit is its I2C capabilities. Pins 19 and 20, though not

immediately available without soldering some headers to

them, allow you to control and read from I2C devices, which

can be very helpful when you’re attaching various sensors

and devices. Having a preprogrammed way of interacting

with large numbers of add-ons can greatly simplify your life.

To use the I2C interface with the micro:bit’s breakout

board, you’ll need to solder some headers to pins 19 and

20. As you remember from Table 6.1, pin 19 is the clock line

(SCL) and pin 20 is the data line (SDA). You can daisy-chain

your devices just as you normally would, and then the func-

tions i2c.write() and i2c.read() allow you to communi-

cate with and control them from your board. You don’t need

to specify a pin when you call these functions, since pin 20

is hard-coded to read and write I2C data, and the micro:bit’s

Getting Started with the micro:bit102

firmware automatically takes care of the timing for you with

pin 19—the SCL (clock signal) pin.

 What Is I2C?
If you’ve been around small embedded electronics like the
Arduino and the Raspberry Pi for a while, you’re probably
familiar with I2C. If, however, you’re new to the game, you
might be wondering just what it is.

I2C, pronounced “Eye Two See,” “Eye Eye See,” or sometimes
“Eye Squared See,” stands for Inter-Integrated Circuit, and
was developed by Philips Electronics in the early ’80s. It’s a
simple two-line system that can be used as a bus for a large
number of devices. It typically has one master device and
many slaves, each of which has a unique address of 7 to 10
bits. The clock signal synchronizes all the devices and allows
them to communicate without stepping all over each other.

In a typical scenario, the master device decides it wants some
information from a device—let’s call it device X. On the clock
tick, the master sends out a signal on the data line: “Device X,
please send me your data.” Devices A, B, C, and D are listening
as well, but as soon as they hear that the call is for device
X, they stop paying attention. Device X, on the other hand,
perks up its ears. On the next clock tick it responds with an
“OK,” and then proceeds to send the data. In another sce-
nario, the master device may have a command for device C;
in this case it advertises device C’s address first, getting its
attention, and then sends it the command. While I2C is a very
simple protocol, it’s also very useful. Many, many devices use
it, and its low power usage makes it an attractive option for
devices like the micro:bit.

Interfacing with the GPIO Pins 103

This brings up another helpful hint for you: if you’re not

sure what functions are available for each pin (not all pins

support read_analog() and write_analog(), for instance)

you can type the pin number in your mu REPL window, fol-

lowed by a period and the Tab key, and you’ll see a list of all

functions that are available to that pin (Figure 6.7.)

FIGURE 6.7: List of available functions for pin 6

If you type i2c.write((no closing parenthesis) and

press Tab, you’ll see all the possible parameters for the

i2c_write() function. You’ll notice that pin numbers are

allowed, but that’s not for reading and writing I2C values;

rather, those parameters are available should you want to

write the value of pin2.read_analog(), for example.

The Motor Driver Board

Now that you’re familiar with ways to access your board’s

GPIO pins, let’s talk about possibly the coolest way of inter-

acting with your board’s pins: with a motor controller board,

which I mentioned in the first chapter. We’ll be using that

board for the micro:bot in a later chapter, so let’s see how we

can interact with it. (See what I did there? The micro:bot is a

play on words, and that’s also what we literary types refer to

as foreshadowing. Stay tuned!)

The motor controller board has a slot into which you’ll

plug your micro:bit, a row of pads on the edge corresponding

to all of the micro:bit’s pins (so you can attach more stuff

even when the board’s plugged in), and seven block terminals.

Getting Started with the micro:bit104

These terminals allow you to connect an external power sup-

ply (essential for driving motors, since the micro:bit can’t

source much current), and connect to two different motors

(such as a left drive wheel and a right drive wheel). You can also

connect two separate input devices that will be hardwired to

pins 1 and 2, and you can also connect an external device to

the button_a and button_b inputs to be read by the micro:bit.

To use the motor controller board, plug your micro:bit into

the slot. The board is designed so that the micro:bit board

may be facing either way; however, in order to use the extra

row of headers on the edge of the board, the LED array will

need to face that edge (Figure 6.5). For our testing purposes

here, it doesn’t matter which way you plug it in.

Now plug in a power supply. The screen printing on the

controller board suggests between 4.5V and 6V, so try a pack

of 3 or 4 AA batteries. The maximum recommended voltage

is 6 volts, so please don’t blame me if you plug in a car bat-

tery and either your motor controller board or your micro:bit

releases a puff of smoke!

Finally, plug in two jumper wires to the MOTOR1 terminal

block. Connect these to your multimeter, using either the

AUTO setting or the 1.5V DC setting as we did before. Your

final setup should look like Figure 6.8.

FIGURE 6.8: Testing setup for motor control board

Interfacing with the GPIO Pins 105

As with most motor controller boards, we control the

motors by alternating the signals sent to the motor termi-

nals. MOTOR1 is controlled with pins 8 and 12 on the micro:bit,

and MOTOR2 is controlled with pins 0 and 16. Table 6.2 shows

the motor behavior associated with different pin values;

remember that Forward and Reverse are relative and depend

on how the motor is connected in the first place.

TABLE 6.2: Pin values and motor directions

P8 P12 MOTOR1 P0 P16 MOTOR2

0 0 coast 0 0 coast

1 0 forward 1 1 forward

1 1 brake 1 1 brake

0 1 reverse 0 1 reverse

To illustrate this, our multimeter will show us voltages as

we change pin values around. In your mu window, start a new

Python script and enter the following:

from microbit import *
while True:
 # Reverse
 pin12.write_digital(1)
 pin8.write_digital(0)
 sleep(2000)
 # Coast
 pin12.write_digital(0)
 sleep(2000)
 # Forward
 pin8.write_digital(1)
 sleep(2000)
 # Brake
 pin12.write_digital(1)
 sleep(2000)

Flash this code to your micro:bit and watch the display

on your multimeter. It should start switching between your

connected voltage, zero, and a negative voltage, about two

Getting Started with the micro:bit106

seconds apart. I’m using 5 AA batteries in the setup shown

in Figure 6.5, so my meter shows 7.2V, 0V, –7.2V, 0V, and so

on. When the voltage is positive, a connected motor will be

spinning in one direction, and when it’s negative the motor

will spin in the opposite direction.

As I’ve mentioned before, two of the terminal blocks

on the board give you access to the button pins; in other

words, sending voltage to those blocks has the same effect

as pushing the buttons on the micro:bit board. To illustrate

that, keep the same setup described earlier, and connect

an additional set of jumper wires to the terminal block for

Button A. You don’t have to connect any voltage source—

pressing the buttons just sends them to ground.

In a new mu script, enter the following:

from microbit import *
while True:
 pin12.write_digital(0)
 pin8.write_digital(0)
 if button_a.is_pressed():
 pin12.write_digital(1)
 pin8.write_digital(0)
 else:
 pin12.write_digital(0)
 pin8.write_digital(1)

Flash this code to your board. When it’s running, at first

your multimeter should be displaying a negative voltage.

When you touch the two jumper wires together, however,

the voltage should immediately become positive. To double-

check that it’s the same as pressing the button, try pressing

the actual Button A on the micro:bit—the results should be

the same.

Interfacing with the GPIO Pins 107

Finally, to try out the input terminal blocks, connect the

same two jumper wires to the INPUT2 block and flash this

code to your micro:bit:

from microbit import *
while True:
 pin12.write_digital(0
 pin8.write_digital(0)
 if pin2.is_touched():
 pin12.write_digital(1)
 pin8.write_digital(0)

Now your multimeter should read around 0V unless you

touch the INPUT2 wires together. At that point, you should

see a negative value on the meter, which then goes away

when you release the wires.

You can also substitute if pin2.read_digital() == 1:

for the if statement in your code, but I’ve found that unless

you have fresh batteries that deliver at least 3V, the pin

will never read 1. For that reason, I’m not particularly fond

of the read_digital() function and would rather use either

is_touched() or read_analog() and use the value of a pot to

determine an input as a parameter value.

So that’s an introduction to accessing the GPIO pins on

the micro:bit. There are additional functions that I didn’t go

into here, but this should give you a basic idea of what’s

possible, with either the edge connector board or the motor

controller board. In the next chapter I’ll show you how to use

Bluetooth and the onboard radio to communicate with your

board, all in preparation for the projects in Chapter 8.

7

Using Bluetooth

Now that you’re familiar with connecting to the micro:bit

using hardware and wires, it’s time to take a look at connect-

ing to the board using the Bluetooth stack. After all, one of

the big selling points of the micro:bit is its BLE (Bluetooth

Low-Energy) connectivity, which is used in many different

IoT applications and devices.

What Is Bluetooth?

Before we get started, I feel I should warn you that Bluetooth

connections in general can be somewhat finicky, and commu-

nicating with the micro:bit is no different. Things don’t always

work the first time, and the micro:bit is still relatively new and

the software and firmware are still being updated. Just don’t

get too frustrated if things seem a little wonky, and I’ll try to

walk you through it as gently and completely as possible.

So what exactly is Bluetooth? You’ve most likely used

it with your smartphone to connect to external devices

like speakers and headphones, or your car radio, or even to

send files to another smartphone. Or you may have used

it on your computer or laptop—perhaps to use a wireless

Getting Started with the micro:bit110

mouse or keyboard. It’s been around longer than you may

think (since 1994, as a matter of fact) and version 5.0 is now

available, which, according to the Bluetooth Special Interest

Group, quadruples range, doubles speed, and increases data

broadcasting capacity by up to 800 percent. If you have a

moment, I recommend visiting www.bluetooth.com/about-us/

our-history, as it’s quite an enlightening read.

Bluetooth is a wireless technology standard originally

designed to be a wireless substitute for RS-232 (serial) com-

munication, developed by Ericsson Telecommunications.

Ericsson was mainly interested in two things: developing

wireless headsets, and allowing mobile phones to commu-

nicate with computers. Devices using Bluetooth communi-

cate at frequencies between 2400 and 2483.5 MHz. Within

that spectrum there are seventy-nine designated channels

over which standard devices can communicate; BLE devices

like the micro:bit have only forty channels to choose from.

Bluetooth differs from WiFi in two main ways: power and

connectivity. WiFi was designed to replace Ethernet and

coaxial cables comprising a network, and is much more pow-

erful in terms of broadcast strength. WiFi is also normally set

up in a client-server mode, where most networked devices

communicate with each other via a central node, such as a

router or a switch. Bluetooth, on the other hand, tends to be

a symmetrical setup, where devices communicate directly

with each other.

Bluetooth LE, the specification used by the micro:bit

and many other IoT devices, was released as Bluetooth 4.0

in 2010. It’s intended to require considerably less power and

cost less than classic Bluetooth but to be similar in terms of

communication range. IoT devices that use BLE can go for

extended periods of time—often months or even a year or

more—on the same small battery.

http://www.bluetooth.com/about-us/our-history

Using Bluetooth 111

Programming Bluetooth on the micro:bit

When it comes to using Bluetooth on your micro:bit, you’ll

most likely end up using C++ and your mbed developer

account, because as you’ll remember from Chapter 5, “The

mbed Operating System,” many of the other online program-

ming environments don’t get you close enough to the hard-

ware to program the Bluetooth stack directly. MicroPython

doesn’t offer Bluetooth connectivity at all, and some of the

others offer only a limited range of options and functionality.

C++ and mbed are currently the best ways to experiment

with Bluetooth (though I expect that may change as the

development environment matures).

Another thing you’ll probably need in order to conduct

pairing experiments is an app for your smartphone that can

read and write to the micro:bit. Unfortunately, as it stands

right now, there is a serious lack of iPhone apps that are

designed for Bluetooth development work with the micro:bit.

I’ve done my best to research apps for both platforms, but

it seems that Android is the way to go if you’re looking to

do any serious work with Bluetooth on your board. The best

cross-platform app I’ve found so far is called nRF Connect

for Mobile. It is free and is available for both Android and

iPhones—just search for it in your respective app store and

download it to your device. It’s not particularly user-friendly

and is quite technical, but it is handy for showing that you’re

connected to your board, it gives you some basic function-

ality, and it works on both types of smartphones. If you have

an Android phone, however, I highly recommend picking up

Martin Woolley’s micro:bit Blue app, also available for free at

the Google Play Store. It allows you to read and write to the

micro:bit device over Bluetooth in a graphic environment, as

I’ll show you in a moment.

Getting Started with the micro:bit112

When we go on to Chapter 8, I’ll discuss serial com-

munication over Bluetooth, which can be done either with

an iPhone or an Android, or even a computer with a Blue-

tooth adapter installed. I also highly recommend the offi-

cial micro:bit app (Figure 7.1), available for both the iPhone

and Android devices for free at their respective app stores

(just search for micro:bit). The official app is generally pretty

helpful and is designed for the novice user. It can get finicky

at times as well, but it will allow you to pair your micro:bit,

write code directly on your phone, and then flash that code

to your board over Bluetooth.

FIGURE 7.1: The official micro:bit app

Using Bluetooth 113

To get started, however, let’s start with mbed. On your

computer, log into your mbed account and bring up the

compiler workspace. First, let’s make sure you’re connected

and have the correct libraries available. Click New at the top

left of your IDE menu bar. In the pop-up menu, make sure

that “An example of how to use the micro:bit DAL’s abstrac-

tion” is selected (Figure 7.2). In this context, DAL stands for

Device Abstraction Layer, and is an abstraction of the hard-

ware on the micro:bit that has been written by the good

folks at Lancaster University. It creates the MicroBit class

and allows you to access various parts and functions of the

device by using methods and variables that have been writ-

ten into the class.

Name the program whatever you like (microbit-test is a

good name) and click OK.

Now, you’ll compile it. Make sure that microbit-test is

selected in your list of programs, then click Compile in the

menu bar. It may take a few minutes to compile, but then

you’ll get a download prompt for a hex file. Download the file

and flash it to your micro:bit, and you should be rewarded

with “HELLO WORLD! :)” scrolling across your display.

FIGURE 7.2: Starting a new micro:bit program

Getting Started with the micro:bit114

Great! Now you know that your compiler is set correctly

and you can flash the resulting files to your board. In order to

work with Bluetooth, you should import an already- working

program into your compiler that you can play around with

and change. In a new tab, point your browser to https://

developer.mbed.org/teams/BBC/code/microbit-samples/, where

you’ll find a sampling of some of the possibilities for your

board. Click the Import Into Compiler button on the right,

and import the program into your compiler workspace.

Once the program is imported, expand it in the Program

Workspace on the left, and then expand the source folder.

Right-click on the HelloWorld.cpp file and choose Clone

(Figure 7.3). Call it BLE.cpp.

FIGURE 7.3: Cloning HelloWorld.cpp

https://�developer.mbed.org/teams/BBC/code/microbit-samples/

Using Bluetooth 115

Now open the MicroBitSamples.h file. Line 41 or so should

read as follows:

#define MICROBIT_SAMPLE_HELLO_WORLD

Change that line to read

#define MICROBIT_BLE_SERVICES

Then, in your BLE.cpp file, change line 29 to read

#ifdef MICROBIT_BLE_SERVICES

Now scroll down a bit (to line 41 or so) and add the following

lines to your main() function:

// Gives Bluetooth access to the various micro:bit
// functions
new MicroBitLEDService (*uBit.ble, uBit.display);
new MicroBitTemperatureService(*uBit.ble, uBit.
thermometer);
new MicroBitAccelerometerService(*uBit.ble, uBit.
accelerometer);
new MicroBitMagnetometerService(*uBit.ble, uBit.
compass);
new MicroBitButtonService(*uBit.ble);
new MicroBitIOPinService(*uBit.ble, uBit.io);

These lines are initializing the Bluetooth on your micro:bit

and making the various services (display, thermometer, etc.)

available to the Bluetooth stack, which makes them visible

to other devices.

Now, you’d hope that would be all you’d need to do and

you could go happily pair your micro:bit to your phone.

Unfortunately, there’s another problem: Bluetooth services

use a lot of memory. Since your board doesn’t have much to

begin with, it turns out that this program, as written, will take

up all the memory on your board and the pairing will fail. So

you need to change a few things so your program isn’t such

a memory hog.

Getting Started with the micro:bit116

Back in your compiler window, expand the microbit/

microbit-dal/inc/core folder and click on the MicroBitConfig.h

file (Figure 7.4).

Scroll down to line 236, and change the 1 at the end of

the line to a 0. Likewise, on line 243, change that 1 to a 0. Here

you’re turning off the device firmware update and event ser-

vices, since you don’t need them in this application (you’re

just testing the Bluetooth, after all). When you’re done, line

236 should read

#define MICROBIT_BLE_DFU_SERVICE 0

and line 243 should read

#define MICROBIT_BLE_EVENT_SERVICE 0

Next, in the same file, scroll up to line 103, and edit it to read

#define MICROBIT_SD_GATT_TABLE_SIZE
0x700

FIGURE 7.4: The MicroBitConfig.h file in the source tree

Using Bluetooth 117

This GATT_TABLE is where the micro:bit keeps track of Blue-

tooth services. By changing the value to 0x700, we’ve maxi-

mized the size of that table.

Finally, scroll up a bit further, and change the value at the

end of line 89 to 0.50 rather than its current 0.75, so that it

reads
#define MICROBIT_NESTED_HEAP_SIZE 0.50

This slightly decreases the amount of memory on the heap

available and gives you a bit more for your program.

When you’ve finished, click the small arrow inside the

Compile button and click Compile All (Figure 7.5). After a bit

you’ll be rewarded with a hex file that you can download and

flash onto your micro:bit.

FIGURE 7.5: Compiling the program

When it’s flashed, the first thing you’ll see is the “Draw a

circle” message. That’s because you included the compass

service in your Bluetooth tests, and the compass needs to

be calibrated every time you flash the device. Draw the cir-

cle to calibrate the compass, and then turn on your phone’s

Bluetooth and open the Bluetooth settings.

Now you’ll pair the micro:bit to your phone. To do this,

on your micro:bit press and hold the A and B buttons, then

press the reset button on the other side of the board. Hold

down the reset button for a second or two, and then release

it. Then release the A and B buttons. It all sounds a bit more

complicated than it is; in short, you just press and hold A and

Getting Started with the micro:bit118

B, press and release reset, and then release A and B. You’ll

see “PAIRING MODE!” scroll by on the display, and then a

pattern will appear on the LED matrix (Figure 7.6).

When you see this pattern, use your phone to try to con-

nect to the micro:bit. The board should immediately display

an arrow pointing to the A button, and your phone should

ask for a six-digit code. This is a code randomly generated

by the micro:bit that needs to be entered into the phone

to complete the pairing process. Press the A button on the

board, and six digits will flash, one after the other. Enter

these numbers into your phone, and you should be greeted

by a check mark on the device.

FIGURE 7.6: The “pairing” pattern

NOTE Your phone may display a message that pairing was
unsuccessful; if you got a check mark on the device, you can

safely ignore that message—it’s paired.

Using Bluetooth 119

If you’re using the official micro:bit app, the app will ask

you to duplicate the pattern first, and then will go through

the six-digit pairing process. The end result is the same.

Now that you’re connected, open up the nRF Connect

app. On the Scanner tab, find your micro:bit in the list of avail-

able devices and click Connect. After the phone connects to

your board, you should see a long list of client attributes and

services that are being read off your board. The services you

enabled in your BLE.cpp file are listed here as Unknown Ser-

vices. Once you’re connected, you are able to read and write,

where applicable, to these services, using your phone. Per-

haps the easiest way to see this is to expand the top Generic

Access service and read the device name from your board by

clicking the down-facing arrow. You should see something

like Figure 7.7, with the device name filled in.

FIGURE 7.7: Reading the micro:bit’s name via Bluetooth

Getting Started with the micro:bit120

You can also click the up-facing arrow (which is short-

hand for write) and write a new name to the board. It won’t

last through a reboot, but it’s a simple way of making sure

everything is working.

Now, if you happen to have an Android phone and have

downloaded the micro:bit Blue app from Martin Wooley I

mentioned earlier, you can see a bit more information. Start

the app and select your micro:bit from the list of paired

devices. You may need to click “Find paired BBC micro-bits”

at the bottom. Once you’ve connected to your board, you’ll

see a list of available services, as shown in Figure 7.8.

FIGURE 7.8: Available Bluetooth services

Using Bluetooth 121

Play around with the services we enabled, like the accel-

erometer, the buttons (Figure 7.9), the thermometer (Fig-

ure 7.10), and—perhaps the most fun—the display LEDs

(Figure 7.11).

Unfortunately, there is no similar app available yet for the

iPhone, so for now you’ll have to be satisfied with checking

that the Bluetooth services exist with the nRF app. In the

next chapter, however, we’ll discuss using serial communica-

tion over Bluetooth to send messages back and forth, and

that communication can happen no matter what platform

you happen to be using.

FIGURE 7.9: Detecting button presses

Getting Started with the micro:bit122

FIGURE 7.10: Reading from the thermometer

FIGURE 7.11: Writing to the display

Using Bluetooth 123

Third-Party Apps

All of this may seem a bit complicated, and as I mentioned

earlier it’s because some sort of program needs to be running

on your smartphone in order to truly communicate with the

micro:bit. You can program your board to send and receive

Bluetooth messages, but you still need a device to handle

the other side of the communication, and programming an

external device like a smartphone to handle the other end

of the messages in a GUI like an app is obviously outside of

the scope of this book.

Luckily, thanks to the rise in popularity of smartphone

apps , there are other options when it comes to building

one for your phone. There are some simple plug-n-play apps

available that can work with the micro:bit, and I’m sure that

more will arise as the micro:bit’s popularity increases. Proba-

bly the most successful so far is the Evothings environment.

 Evothings uses a somewhat unique model: there are actually

three programs working simultaneously. The first, obviously,

is your micro:bit code. A second code runs on your phone and

allows you to program a GUI using drag-and-drop technol-

ogy. It also allows you to interact with an external device like

a micro:bit. Finally, a third program, Evothings Studio, runs on

your desktop or laptop computer (Figure 7.12) and commu-

nicates with your phone via Evothings’ cloud servers. These

cloud servers act as a middleman between your computer

and your phone. It sounds complicated, but it seems to work

pretty well. If you’re interested in playing with Evothings, you’ll

need the mobile app for your OS, and the Evothings Studio

program for your computer, available at https://evothings.com.

Kivy is another cross-platform Python development

tool, designed to make coding apps as painless as possi-

ble, but unfortunately Kivy’s Bluetooth support is almost

https://evothings.com

Getting Started with the micro:bit124

nonexistent, so it won’t work for our purposes. Other apps

exist as well, but it’s hit and miss when it comes to their

success with working with the micro:bit.

FIGURE 7.12: Evothings Studio

As I said earlier, in the next chapter we’ll break things

down further and make them even simpler, and communi-

cate with the micro:bit via serial communication over Blue-

tooth. This approach is not particularly elegant, but it will

allow us to communicate with and control a small mobile

robot, and Bluetooth serial communication applications are

available for both platforms.

8

Serial Bluetooth
Communication and
the micro:bot

Now that we’ve looked at some Bluetooth setup and

configuration, let’s explore another way to interact with

your micro:bit over Bluetooth—with the UART serial inter-

face. A UART (universal asynchronous receiver/transmitter)

is a form of communication via hardware, over a serial con-

nection, in which the data format and transmission speeds

are configurable.

This form of communication can sometimes be difficult

to set up, but once it’s working it’s the simplest way of send-

ing and receiving messages to your micro:bit board. Since

you’re going to want to control your little mobile robot via

your board with Bluetooth from your phone, it makes sense

to learn about this way of communicating.

UART and Bluetooth

The serial UART Bluetooth interface is not enabled by

default, so you’ll need to turn it on and use a few lines of

Getting Started with the micro:bit126

code to configure it. Again, this is beyond what MicroPython,

Blocks, and Code Kingdom are capable of, so you’ll need to

open up your mbed compiler window again.

Let’s start by cloning the microbit-samples code again

like we did in the previous chapter. Right-click on the

microbit-samples folder and choose Clone. Name the new

folder whatever you like, but as this is testing our UART

communications, let’s name it something appropriate. I

named mine UART.

Once the cloning process has completed, you have sev-

eral things to do. You’ll have to change the MicroBitSamples.h

file to #define a new variable. You’ll have to write a new .cpp

file that compiles and does what you want it to once the new

variable has been defined. And finally (and as it turns out,

most importantly), you’ll need to update your microbit-dal

folder.

As it turns out, the microbit-dal folder that’s included

with the microbit-samples code is slightly outdated. It works

for most purposes, but the included files don’t declare some

important variables—namely MICROBIT_BLE_EVT_CONNECTED

and MICROBIT_BLE_EVT_DISCONNECTED. Those variables are

used to call functions when particular events (Bluetooth

connections and disconnections, as you probably guessed)

are detected. In order for these events to be detected cor-

rectly (and for your compilations to complete without errors),

you must obtain a newer version of microbit-dal and replace

the one currently residing in your UART folder. So first, in your

current UART folder, right-click the microbit-dal directory

(UART/microbit/microbit-dal) and click Delete.

Make sure you’re still signed in to your mbed account. Point

your browser to https://developer.mbed.org/teams/Lancaster-

University/code/microbit-dal/rev/493daf8966fd. Just like you

did for the microbit-samples application, click the orange

https://developer.mbed.org/teams/Lancaster-University/code/microbit-dal/rev/493daf8966fd
https://developer.mbed.org/teams/Lancaster-University/code/microbit-dal/rev/493daf8966fd

Serial Bluetooth Communication and the micro:bot 127

Import Into Compiler button on the right side of the page

(Figure 8.1).

 FIGURE 8.1: Importing a new version of microbit-dal

The Import Library window will open; this is where you

tell the compiler where to place the new library. Make sure

Library is selected, and make the target path /UART/ microbit

(Figure 8.2). Then click Import.

FIGURE 8.2: Placing the new microbit-dal library

Getting Started with the micro:bit128

Now that’s done, you can start on the actual code. Open

the MicroBitSamples.h file (/UART/source/ MicroBitSamples.h).

Make sure all of the #defines between lines 38 and 50 are

commented out (with a double // in front). Then, before all of

them (line 40 or so), add the line

#define MICROBIT_UART

and save the file.

Now, right-click on the source folder and choose New File.

Name the new file UART.cpp. Then write the following in the

file (we’ll go over this in a moment):

#include "MicroBit.h"
#include "MicroBitSamples.h"
#include "MicroBitUARTService.h"
#ifdef MICROBIT_UART
MicroBit uBit;
MicroBitUARTService *uart;
int connected = 0;
void onConnected(MicroBitEvent e)
{
 uBit.display.scroll("C");
 connected = 1;
 ManagedString eom(":");
 while (1)
 {
 ManagedString msg = uart->readUntil(eom);
 uBit.display.scroll(msg);
 }
}
void onDisconnected(MicroBitEvent e)
{
 uBit.display.scroll("D");
 connected = 0;
}
void onButtonA(MicroBitEvent e)
{
 if (connected == 0)
 {
 uBit.display.scroll("NC");
 return;
 }
 uart->send("YES\n");

Serial Bluetooth Communication and the micro:bot 129

 uBit.display.scroll("YES");
}
void onButtonB(MicroBitEvent e)
{
 if (connected == 0)
 {

uBit.display.scroll("NC");
return;

 }
 uart->send("NO\n");
 uBit.display.scroll("NO");
}
void onButtonAB(MicroBitEvent e)
{
 if (connected == 0)
 {

uBit.display.scroll("NC");
return;

 }
 uart->send("GOT IT!\n");
 uBit.display.scroll("GOT IT!");
}
int main()
{
 uBit.init();
 uBit.messageBus.listen(MICROBIT_ID_BLE, MICROBIT_
BLE_EVT_CONNECTED, onConnected);
 uBit.messageBus.listen(MICROBIT_ID_BLE, MICROBIT_
BLE_EVT_DISCONNECTED, onDisconnected);
 uBit.messageBus.listen(MICROBIT_ID_BUTTON_A,
MICROBIT_BUTTON_EVT_CLICK, onButtonA);
 uBit.messageBus.listen(MICROBIT_ID_BUTTON_B,
MICROBIT_BUTTON_EVT_CLICK, onButtonB);
 uBit.messageBus.listen(MICROBIT_ID_BUTTON_AB,
MICROBIT_BUTTON_EVT_CLICK, onButtonAB);
 uart = new MicroBitUARTService(*uBit.ble, 32, 32);
 uBit.display.scroll("AVM");
 release_fiber();
}
#endif

So let’s take a look at this code for a moment (you can

download the file at https://github.com/wdonat/microbit-code/

blob/master/chapter8/UART.cpp). The first two lines you’ve seen

before, and the third line, #include "MicroBitUARTService.h",

https://github.com/wdonat/microbit-code/blob/master/chapter8/UART.cpp

Getting Started with the micro:bit130

is necessary to start the UART service, since it’s disabled by

default.

MicroBit uBit;
MicroBitUARTService *uart;

Then we initialize the MicroBit object and create a pointer

to a MicroBitUARTService, uart. This explains the uart-> lines

later in the program; uart is a special memory location that

points to a collection of functions and variables that all work

together, and those functions and variables are accessed

using the arrow (->) notation. If you were creating a class and

accessing its functions and variables directly, rather than via

a pointer, you would use a dot (.) notation instead.

The next two functions, onConnected() and onDisconnected(),

dictate what happens when the micro:bit detects an event—

namely, MICROBIT_BLE_EVT_CONNECTED and MICROBIT_BLE_

EVT_DISCONNECTED that we see in the main function. (You can

see why we needed the newer version of the microbit-dal

directory—that’s where those two variables are declared and

defined.) In the main function, you can see that we’re lis-

tening to the messageBus on the micro:bit, and calling those

functions when we detect the correct event.

There are two important lines in the onConnected() func-

tion regarding the end-of-message (eom) variable. You can

see that it’s a ManagedString, that its value is :, and that

we call the uart->readUntil() function with it. What this

means is that we’re using the colon character (:) as our end-

of-message marker, and the micro:bit will read (and display)

the message we send until it gets a colon.

The other three functions dictate what happens when

we detect a MICROBIT_BUTTON_EVT_CLICK on the messageBus—

either Button A, Button B, or both. Obviously, for testing

Serial Bluetooth Communication and the micro:bot 131

purposes, we’re not doing anything spectacular—just dis-

playing and returning some text.

Open the MicroBitConfig.h file (UART/microbit/ microbit-

dal/inc/core/ MicroBitConfig.h). Again, you’ll need to do a

little memory management, since the Bluetooth is such a

memory hog. On line 90, set the heap size to 0.50:

#define MICROBIT_NESTED_HEAP_SIZE 0.50

A little further down on line 104, make the GATT table a

bit smaller:

#define MICROBIT_SD_GATT_TABLE_SIZE 0x300

If you’ll recall from Chapter 7, “Using Bluetooth,” the GATT

table is where the micro:bit keeps track of Bluetooth ser-

vices. Since you’re not using all of the available services, you

can make it smaller, which has the desirable effect of freeing

up some memory for you.

And finally, turn off some services. On line 237, disable

the DFU service (this disables on-air programming, which

we’re not doing anyhow):

#define MICROBIT_BLE_DFU_SERVICE 0

and on line 244, disable event services, since they’re not

needed here:

#define MICROBIT_BLE_EVENT_SERVICES 0

While we’re in this file, there are two tweaks I make that

seem to make Bluetooth development a bit easier. These

are completely optional, and your program will work whether

or not you try these tweaks. The first thing I do is disable

security to make pairing a bit easier. On line 190, set it to 1:

#define MICROBIT_BLE_OPEN 1

Getting Started with the micro:bit132

Then set the no-security transmission power on line 198:

#define MICROBIT_BLE_DEFAULT_TX_POWER 6

Finally, I disable the whitelist on line 216 to make pairing

easier:

#define MICROBIT_BLE_WHITELIST 0

As I said, these last tweaks are optional, but if you’re having

trouble pairing it might be worth giving these a try.

When you’ve finished making all of these tweaks, it’s time

to compile and save the hex file. Make sure everything has

been saved, and then click the arrow on the Compile button

and select Compile All. When it’s finished compiling, save the

hex file (which should be named UART_NRF51_MICROBIT.hex) to

your computer.

You can flash it to your micro:bit right away if you like,

but you’ll need something else before you can test it—an

app for your smartphone that will allow you to send and

receive serial commands over Bluetooth. I don’t have a rec-

ommendation here; there are multitudes of possibilities for

each platform, but choose a free one. The important thing

is that it’s for serial communications, and it’s for both Blue-

tooth and Bluetooth LE devices (not all apps work with BLE

devices). I’m using Serial Bluetooth Terminal by Kai Morich

on my Android.

Once you’ve selected an app, install it, pair your phone

(or computer) with the micro:bit, and open the application.

Make sure the two devices are paired; you may need to tell

the particular app you’re using to connect to the micro:bit,

though you’ve already paired them. You may need to press

the Reset button on your micro:bit as well. Once they’re

paired, on your phone or laptop, type a, follow it with the

colon (:), and press SEND.

Serial Bluetooth Communication and the micro:bot 133

You should immediately see “a” scroll across the

micro:bit’s display. Pretty cool, eh? Try typing a word next,

like spam, and follow it with a colon. Same result, right?

Okay, now press the B button on your micro:bit. You

should see “NO” scroll across the display, and you should

also see “NO” appear in the terminal on your smartphone or

computer (Figure 8.3).

FIGURE 8.3: Serial communication
via Bluetooth

You’ve done it! You’re now successfully communicating

back and forth with your micro:bit! As you can probably

imagine, it’s only a short step now to communicating with

(and controlling) a small mobile robot.

Getting Started with the micro:bit134

The micro:bot

I feel I should preface this section by letting you know that

there is at least one other mobile robot out there called the

micro:bot, so this is in no way trademarked, and if you can

come up with a better name for it, that’d be awesome.

I should also state here that I did not make the plat-

form on which our robot is based. I do tend to build a lot of

robots from scratch, but at some point I realized that I was

essentially doing the same thing over and over again. So, in

the interest of speeding up the process of creating mobile

robots using different parts, I invested in a bot development

platform. I chose the Turtle, a 2WD mobile platform from DF

Robot (https://www.dfrobot.com/product-65.html—Figure 8.4).

FIGURE 8.4: The Turtle platform

I do not get any percentages of sales, should you choose

to follow my lead; just know that I’ve used this platform for

a succession of bots and have never had any problems with

it. It comes with two motors and two wheels, a single-pole,

single-throw (SPST) switch, and various mounting brack-

ets, connectors, and wire, and only costs about $35. You,

of course, are free to choose another platform or to build

your own; the important thing here is that you can con-

trol your platform using the motor controller board and a

https://www.dfrobot.com/product-65.html

Serial Bluetooth Communication and the micro:bot 135

Bluetooth-enabled device. Other than that, you’re only lim-

ited by your imagination.

 Basically you’re going to want your bot platform to have

two wheels, each controlled by a different motor. Those

motors will be wired to the MOTOR1 and MOTOR2 outputs

on the micro:bit’s motor controller board. Then all you have

to do is wire a power source to the POWER terminal block

on the board and plug in your micro:bit. A separate power

source for the micro:bit isn’t necessary, because the motor

controller board has an onboard power regulator that deliv-

ers the micro:bit’s required 3 volts.

For that reason, however, you may want to wire a switch

inline with the power supply (the Turtle platform has one

onboard) so that you can easily switch off power to the

board—and the micro:bit—without having to unplug wires

or remove the :bit.

Your results may vary, but you hopefully will end up with

something that resembles Figure 8.5.

FIGURE 8.5: Completed micro:bot

Getting Started with the micro:bit136

Depending on how you’ve wired everything, make sure

that you get power to the board when you need it, and then

move on to writing the program for your board.

The micro:bot Program

As you can imagine, the program for the micro:bot is going

to be very similar to the Bluetooth test code you wrote ear-

lier. However, you’ll be turning pins on and off depending

on the values that you send from the phone, and that will

determine if the bot goes forward, backward, turns, or stops.

Back in your mbed developer account, to keep things

simple, you can just clone the UART program you created

earlier. To do so, right-click on the main folder and select

Clone. Call the new program buggy and click OK.

Since you’ve cloned a working program, you won’t need

to mess with the MicroBitConfig.h file or any of the memory

tweaks, since they’re all included in your new cloned file. You

will, however, need to fix the MicroBitSamples.h file (buggy/

source/MicroBitSamples.h). Open that file, scroll down to

the #defines section, and change line 40 to read

#define MICROBIT_BUGGY

Then save the file. Now right-click on the UART.cpp file and clone

it, calling the new program buggy.cpp. (Make sure you keep the

file in the same place in the directory when you clone it; the final

file location should be buggy/source/buggy.cpp.) When you’re

done, feel free to delete UART.cpp if you would like to keep your

workspace clean.

Now let’s edit buggy.cpp. The first thing to change is line

30, the #ifdef line. Change that to read

#ifdef MICROBIT_BUGGY

This tells the compiler to only compile this .cpp file if

 MICROBIT_BUGGY is defined in MicroBitSamples.h.

Serial Bluetooth Communication and the micro:bot 137

Now let’s declare some pins. Delete the line

int connected = 0;

(let’s assume you’re always connected, since it just won’t

work otherwise) and add

int pin12, pin8, pin16, pin0 = 0;

These are the pins that are hardwired to the MOTOR1 and

MOTOR2 terminal blocks on the motor controller board.

The onDisconnected() function you’ll leave alone—it

works just fine for our purposes. You do need to tweak the

onConnected() function, however. Change the while() loop

to read as follows:

while(1)
{
 ManagedString msg = uart->read(1);
 moveBot(msg);
}

and remove the line

ManagedString eom(":");

What this now does is read just one character from the

serial stream, and then it calls the moveBot() function (which

we’ll show you how to write in a moment) with that one char-

acter. This way, you can type a on your serial terminal and

the moveBot() function will immediately be called with a as

soon as you hit Send on your device. You don’t have to type

a delimiter like the colon.

In case you’re familiar with C and C++ and are wonder-

ing just what the heck a ManagedString is, it’s the micro:bit’s

answer to C’s character array (char[]) and C++’s string

types. The ManagedString is a managed type that releases

memory as needed—no garbage collection necessary—and

is less prone to bugs by inexperienced programmers. It can

Getting Started with the micro:bit138

be constructed in several different ways, it can be manip-

ulated (concatenated, chopped up, etc.), and you can even

use operators like +, =, ==, and < and > with it.

OK, back to the program. Let’s write the function that

does all the work—moveBot().

void moveBot(ManagedString message)
{
 ManagedString w("w");
 ManagedString space(" ");
 ManagedString a("a");
 ManagedString d("ad");
 ManagedString s("s");
 if (message == w) // start moving
 {
 pin12 = 1;
 pin16 = 1;
 drive = 1;
 }
 else
 {
 if (message == space) // all stop
 {
 pin12 = 0;
 pin16 = 0;
 drive = 0;
 }
 }
 if (drive == 1)
 {
 if (message == a) // left
 {
 pin12 = 1;
 pin16 = 0;
 }
 else
 {
 if (message == d) // right
 {
 pin12 = 0;
 pin16 = 1;
 }
 else
 {

Serial Bluetooth Communication and the micro:bot 139

 if (message == s) // stop going left
or right
 {
 pin12 = 1;
 pin16 = 1;
 }
 else
 {
 }
 }
 }
 }
 uBit.io.P0.setDigitalValue(pin0);
 uBit.io.P8.setDigitalValue(pin8);
 uBit.io.P12.setDigitalValue(pin12);
 uBit.io.P16.setDigitalValue(pin16);
 return;
}

This function is pretty self-explanatory, I think, despite the

nested if/else statements. You compare the strings received,

and depending on what they are, you send the bot in a specific

direction. When you’re finished, the final buggy.cpp should look

like this:

#include "MicroBit.h"
#include "MicroBitSamples.h"
#include "MicroBitUARTService.h"
#ifdef MICROBIT_BUGGY
MicroBit uBit;
MicroBitUARTService *uart;
int pin0, pin8, pin12, pin16 = 0;
int connected = 0;
int drive = 0;
void moveBot(ManagedString message)
{
 ManagedString w("w");
 ManagedString space(" ");
 ManagedString a("a");
 ManagedString d("d");
 ManagedString s("s");

 if (message == w) // start moving
 {
 pin12 = 1;

Getting Started with the micro:bit140

 pin16 = 1;
 drive = 1;
 }
 else
 {
 if (message == space) // all stop
 {
 pin12 = 0;
 pin16 = 0;
 drive = 0;
 }
 }
 if (drive == 1)
 {
 if (message == a) // left
 {
 pin12 = 1;
 pin16 = 0;
 }
 else
 {
 if (message == d) // right
 {
 pin12 = 0;
 pin16 = 1;
 }
 else
 {
 if (message == s) // stop moving left or right
 {
 pin12 = 1;
 pin16 = 1;
 }
 else
 {
 }
 }
 }
 }
 uBit.io.P0.setDigitalValue(pin0);
 uBit.io.P8.setDigitalValue(pin8);
 uBit.io.P12.setDigitalValue(pin12);
 uBit.io.P16.setDigitalValue(pin16);
 return;
}

Serial Bluetooth Communication and the micro:bot 141

void onConnected(MicroBitEvent e)
{
 uBit.display.scroll("C");
 connected = 1;
 while(1)
 {

ManagedString msg = uart->read(1);
moveBot(msg);

 }
}
void onDisconnected(MicroBitEvent e)
{
 uBit.display.scroll("D");
 connected = 0;
}
int main()
{
 // Initialize the micro:bit runtime.
 uBit.init();
 uBit.messageBus.listen(MICROBIT_ID_BLE, MICROBIT_
BLE_EVT_CONNECTED, onConnected);
 uBit.messageBus.listen(MICROBIT_ID_BLE, MICROBIT_
BLE_EVT_DISCONNECTED, onDisconnected);
 uart = new MicroBitUARTService(*uBit.ble, 32, 32);
 uBit.display.scroll("BUGGY!");
 // If main exits, there may still be other fibers
 // running or registered event handlers etc.
 // Simply release this fiber, which will mean
 // we enter the scheduler. Worse case, we
 // then sit in the idle task forever, in a
 // power-efficient sleep.
 release_fiber();
}
#endif

Save the program, compile it, and flash the hex file to

your micro:bit. You can download the file at https://github

.com/wdonat/microbit-code/blob/master/chapter8/buggy.cpp.

Once it’s loaded, pair your phone with the micro:bit and

bring up the Bluetooth serial terminal app you installed.

After you connect to your board, type (and send) w. Your

bot should shoot across the room. If you need it to stop,

https://github.com/wdonat/microbit-code/blob/master/chapter8/buggy.cpp

Getting Started with the micro:bit142

send a space; sending a and d should make it turn left and

right, respectively. (If your bot turns right when you type

a and left when you type d, it simply means that you’ve

reversed your connections from the motors going to your

motor board. Just swap the wires.) If it’s turning in a circle,

sending an s will make it stop turning and resume going

forward. Again, a space will make it come to a full stop no

matter what it’s doing.

Now, granted, this is not particularly elegant code. With-

out writing a smartphone app, we’re reduced to communi-

cating with the micro:bit with a serial connection, sending

characters one at a time. I tried to borrow from the typical

video game keys, using w, a, s, and d, but I’ll admit it can

be tricky to get the hang of typing w and hitting Send and

then a and hitting Send and then s and hitting Send quickly

in succession in order to get the bot to turn a corner and

keep going. It can be done, of course; my dog is now a highly

trained bot chaser.

If you have experience with writing apps for your par-

ticular platform, I encourage you to write a more graphical

interface for your bot. The micro:bit Blue app I mentioned

earlier that is currently Android-only has a gamepad screen

that can be used with a program very similar to ours to

control the bot. You can find that program here: https://

lancaster-university.github.io/microbit-docs/ble/event-service/. I

thought it was important, however, that you first learned

about the guts of Bluetooth serial communication, and of

course there’s the small problem that if you own an iPhone,

the gamepad interface will be unavailable to you.

That concludes our introductory exploration of the

micro:bit platform. If you want to get deeper into program-

ming the board, particularly in C/C++, I highly recommend

visiting https://lancaster-university.github.io/microbit-docs/. The

https://�lancaster-university.github.io/microbit-docs/ble/event-service/
https://lancaster-university.github.io/microbit-docs/

Serial Bluetooth Communication and the micro:bot 143

documentation there of the micro:bit runtime is exhaust-

ingly thorough; all you’ll ever need to know about all possible

classes, functions, types, and so on can be found there. If

you still prefer Python and the other languages, I encourage

you to stay abreast of changes; the micro:bit environment

is new and is changing quickly. Either way, keep learning and

building, and I look forward to seeing what you come up with!

A

The Story of the
BBC micro:bit

So where did the micro:bit come from? Who thought of

it, why, and why is it becoming so successful? And how do

you go about giving away almost a million individual boards

to children all across the United Kingdom?

To answer those questions, I corresponded with Howard

Baker from the Micro:bit Education Foundation. He and Jo

Claessens in their roles in BBC Learning worked together to

design the first prototype, and Michael Sparks is the BBC

R&D engineer who actually built it. (Howard has an interest-

ing background: he’s been a chemist, a fashion designer, a

science teacher, a journalist, and a researcher.) I also chat-

ted with Gareth Stockdale from the BBC. I was curious as to

the project’s inception, how it evolved, and what went into

making it a success.

NOTE All quoted material in this appendix came from an
interview with the author conducted on May 25, 2017.

Getting Started with the micro:bit146

According to Howard, the idea for the micro:bit was

spawned by two separate news articles that were released

at about the same time in 2011 and 2012. Both articles—one

from The Royal Society and one from Nesta—discussed the

fact that children in the United Kingdom were graduating

with almost no knowledge of coding or computer science,

and the result was that the UK expected to have a “knowl-

edge deficit” of skilled tech workers in a few years.

NOTE If you’re familiar with the origins of the Raspberry
Pi, you may see a similarity here. In the case of the Pi, Eben
Upton and its other creators noticed that British young adults
were entering college with almost no knowledge of computer
science or programming; students’ idea of programming was
writing a little HTML and CSS for a website.

Because Howard was then working for the BBC, he

put forth the idea that the BBC should do something to

“spotlight the problem, raise the profile of computer sci-

ence, provide positive role models and get kids coding

and interested in computer science.” The organization had

had previous experience—in the 1980s the BBC Micro had

introduced children all over the UK to computers. Howard

and his colleagues had noticed that the Maker and Hacker

movements had become very popular with young people,

and he wanted to build on that, to enable children to make

something.

When it came to designing a product that could do what

they wanted it to, Howard and his team considered a host

of factors, including cost, complexity, and how easy it would

be for kids to interact with the board. Luckily, ARM chips

The Story of the BBC micro:bit 147

have been steadily decreasing in price, so they were able to

make a device that was much cheaper than a Raspberry or

an Arduino (both excellent boards, but costing a bit more

than pocket change if it came to giving them away). As How-

ard puts it:

We thought of the device as a “platform”—there was the

device itself—the micro:bit—but it had to be delivered

with the simplest, easiest software possible and learning

resources that would excite kids to get involved. It had to

be very cheap so we could give it away—this gave some

challenges, including its shape. It had to be very easy to

program—nothing was to get in the way of a kid being given

one and them getting it to do something interesting. It had

to excite kids; they needed to look at it and want to get

to know it and use it. However, it also needed to be eas-

ily extensible—low floor, high ceiling—once they had done

something to excite them they could see the potential

to build complex things with it and the device would be

capable of letting them do that. It was also necessary for

it to be a physical object, stripped of coverings, so a child

could see how it worked and it could fit in the palm of their

hand—they could touch it, work with it with their hands,

build things with it. We also planned the device to be a

wearable, so again it had to have a certain size and appear-

ance. The other thing I was thinking of at the time was the

Internet of Things. I was looking at what was the next revo-

lution to affect society—preparing kids for an exciting tech

revolution is a better stimulus than telling them if they

didn’t get their act together and learn coding they would

be unemployable. I wanted the micro:bit to be an Internet

of Things tool—something that would help them create the

revolution, not wait to consume it.

Getting Started with the micro:bit148

Gareth Stockdale from the BBC adds that “there are

significant and distinct educational advantages to provid-

ing a hands-on experience” when it comes to teaching kids

about technology. In other words, just learning to code is

one thing; learning to code on a device that then does some-

thing is another thing entirely. As an engineer myself, I can

totally vouch for this way of thinking; I enjoy coding, but I

much prefer it when my code makes something do a task

that interacts with the physical world. Perhaps I’m not much

more than a kid after all.

As far as partners with the project, the BBC was obvi-

ously involved straight from the beginning and has nursed

the project through its current state. It has always been

an extremely popular program within the organization, so

although there were difficulties, there was enough in-house

support to make sure it succeeded.

In December 2014, the BBC put out a call for expressions

of interest for organizations wanting to be partners in the

project. More than 150 companies responded, and 31 were

chosen. It wasn’t a problem to convince people that the

micro:bit was necessary—many organizations were already

aware of the looming skills shortage and were looking for

ways to address it.

In fact, according to Howard, there was no shortage of

companies and individuals wanting to donate cash, chips,

services, software, and everything else; the hard part was

coordinating everything. The BBC Micro project was thirty

years ago, after all, and getting dozens of partners to work

together in sync was, as you can imagine, a logistical night-

mare. In the end, a total of thirty-one organizations banded

together in order to make it possible for the BBC to create

a board that could be given away to a million children—one

for every school child in their first year of secondary school

The Story of the BBC micro:bit 149

(the equivalent of seventh grade in the United States). Initial

prototypes proved popular—kids loved the 25-LED matrix,

the two buttons, and the fact that it was so easy to get the

board to do something.

There has been support from more than the coordinat-

ing partners, of course. For example, in April 2016 the BBC

One show aired a report showing how three students from

Fallibroome Academy in Cheshire, England, were taken to

the Lovell Telescope at the Jodrell Bank Observatory. There,

astrophysicist Tim O’Brien allowed them to program their

micro:bits to turn the 3,200-ton telescope to point at a dis-

tant pulsar (https://www.youtube.com/watch?v=NqIzufUiwN4).

Not bad for a device that weighs only a few grams!

There are obviously going to be comparisons between

the micro:bit and the Raspberry Pi, so I asked Howard if the

Pi was part of the inspiration, and if there were things he

wanted to emulate or do differently from the Pi Founda-

tion. His response was that micro:bit team wanted to create

something that had a lower barrier to entry than some of

the existing products in the market. The team kept that in

mind as they designed their board. They also tried to keep

their target audience a bit younger than the Pi’s, letting their

device act as a springboard to more advanced devices like

the Pi and the Arduino.

The Pi Foundation was very supportive of the project

and was involved with discussions right from the begin-

ning. The micro:bit team always kept the Pi in mind as they

were building their board; they wanted a device that would

be extremely easy to set up and use so that there was no

entry barrier, but that would then get users interested in

the next logical step—a Pi or something similar. They wanted

the micro:bit to be a stepping-stone to the Raspberry Pi,

and the boards seem to be working together quite well. The

https://www.youtube.com/watch?v=NqIzufUiwN4

Getting Started with the micro:bit150

micro:bit has sensors that the Pi doesn’t have, and the two

can communicate easily over BLE. The micro:bit can then

display information from the Pi on its LED matrix, so their

partnership seems to be a success.

As to what the future may hold for the micro:bit . . . the

organization has some grand plans. In late 2016 the BBC

launched the nonprofit Micro:bit Education Foundation,

with the goal of empowering children, parents, and teach-

ers around the world to create and learn using the micro:bit.

The Foundation’s big objective: to get a board in the hands

of 100 million people around the world. Nine partners are

now involved: the BBC, Microsoft, ARM, the British Coun-

cil, IET Institution of Engineering and Technology, Nominet,

Amazon, Samsung, and Lancaster University. In pursuit of

their goals, the team has migrated the original website,

http://microbit.co.uk, to http://microbit.org, which is available

in twelve different languages. They are continuing educa-

tional programs in the UK and are sponsoring classroom kits

around the world, with national rollouts in progress in the UK,

Iceland, and Croatia. The fact that you can now purchase

the micro:bit from US retailers like SparkFun is partly thanks

to the Foundation’s work, and the board is now available in

thirty-two countries around the world.

In closing his remarks with me, Howard stressed that

the micro:bit “is the product of the very hard work of a large

number of clever and wonderful people and organizations.”

Those organizations that have led the way on software, hard-

ware, design, manufacture, and distribution include ARM,

Barclays, the BBC, element14, Lancaster University, and

many others. The project is the brainchild of a large number

of extremely brilliant and talented people in BBC Learning,

which leads the BBC’s education strategy. That strategy

includes the Make It Digital season, which was announced

http://microbit.co.uk
http://microbit.org

The Story of the BBC micro:bit 151

and championed by the BBC’s Director General Tony Hall

in 2015. After working with the device myself, I have to say

that I’m extremely impressed with the finished product and

I hope it gets a whole new generation interested in comput-

ers, programming, and engineering.

B

Other Programming
Environments

Perhaps you’re not a fan of Python (gasp!) or you’re not

ready to take the leap into learning a full programming

language and just want to play around with your micro:bit

board using some easy-to-learn IDEs.

If that’s the case, you’re in luck. The Micro:bit Foundation

currently has three other coding environments available for

the micro:bit, aside from Python: the Blocks Editor (based

on Microsoft’s Blocks environment), Code Kingdoms’ Java-

Script, and Microsoft’s Touch Develop. All of these are fairly

user-friendly, and in this appendix I’ll walk you through set-

ting up and using each of them.

The Blocks Editor

The JavaScript-based Blocks Editor uses a user interface

that’s not unlike puzzle pieces. In fact, if you’ve ever used

the Scratch programming interface (it comes preinstalled on

many Raspberry Pi distributions, for instance), you’ll prob-

ably recognize it right away. In the case of the micro:bit,

Getting Started with the micro:bit154

programming puzzle pieces vary from basic (show number 0)

to more intricate control of the LED array (plot x 0 y 0)

to yet more advanced functionality like reading and writ-

ing data over a serial connection or controlling and reading

from the GPIO pins. It’s designed the way it is to appeal to

younger users, but honestly it’s a pretty attractive interface

for adults, too. At first glance it appears to be rather simplis-

tic, but the interface belies its actual capabilities.

To get started with Blocks, point your browser to https://

makecode.microbit.org/. You’ll be greeted by the screen you

see in Figure B.1.

FIGURE B.1: The Blocks Editor screen

To create a script, you choose from the various catego-

ries in the middle, ranging from Basic to Input to Radio and

Logic (see Table B.1 for a rundown of each category). Clicking

on a category brings up a new screen with all of the puzzle

pieces available to you (Figure B.2).

https://makecode.microbit.org/
https://makecode.microbit.org/

Other Programming Environments 155

TABLE B.1: Categories and functions

CATEGORY EXAMPLE FUNCTIONS

Basic show leds, show icon, show string

Input on button press, on shake, get temp

Music play tone, start melody, change tempo

Led plot (x,y), unplot (x,y), plot bar graph

Radio send number, send string, receive value

Loops repeat, while

Logic if/then, if/then/else, and, or, not

Variables create/set variables

Math +, -, *, /, random numbers

FIGURE B.2: The Radio pieces

Getting Started with the micro:bit156

You then drag and drop the blocks onto the right portion

of the screen, where they fit together as you place them.

Loops and conditionals, like while() and if(), are shaped

with a “hole” in them (Figure B.3). Declarative statements,

meanwhile, are shaped to fit inside those holes and are pro-

cessed as part of the loop that encases them (Figure B.4).

The outer loop piece will resize itself to fit around the inner

portion if necessary (the show leds piece, for instance, is a

pretty hefty piece).

FIGURE B.3:
while() loop

Make your selection from the list on the left, and drag

it into the workspace on the right. Notice that if you hover

over a piece after you place it, an information dialog pops

up telling you not only what the piece does, but also how

it would look if you were coding it in JavaScript (which is,

after all, what the end result of this interface is—a JavaScript

program).

Perhaps the best way to illustrate how this works is just

to jump right in. Start by clearing out any blocks currently on

the workspace by right-clicking them and selecting Delete

Block. If you right-click on a loop piece that encases several

other pieces, you’ll have the option of deleting the entire

group, rather than having to do it one by one.

Once your workspace is clear, click the Basic category

and drag the on start piece and the show leds piece. Drag

the show leds piece into the on start piece until it clicks into

position and the on start piece resizes to fit. (This can take

some fiddling; I found that if you click on and drag the small

FIGURE B.4: Statement inside a while() loop

Other Programming Environments 157

indent at the top of the piece and drag it to the matching

indent on the outer piece, it’ll click right into place.)

When your two pieces are interconnected, click on some

of the squares in the show leds array—they’ll turn red as

you click, meaning they’ll be lit when you start the program.

When you’re satisfied with the design, leave those pieces and

drag another one—let’s say the on button A pressed from

the Input category—onto the workspace. Finally, go back to

the Basic category and drag the show string "Hello" piece

onto the board. Click on "Hello" and fill in whatever string

you’d like to display. Then drag that piece into the slot on

the on button pressed piece. When you’re done, your work-

space should look like Figure B.5.

FIGURE B.5: Your first Blocks program

Now, before you download and flash your script, notice

the picture of the micro:bit board on the left of your browser

window. It most likely is currently displaying the design that

you placed in your show leds puzzle piece. (If it’s not, click the

replay icon to the left of the square below the micro:bit pic-

ture.) That’s because this image actually gives you a chance

Getting Started with the micro:bit158

to preview the script you’ve written. If you now click the A

button on the image with your mouse, the board will display

the message you typed. If you’re satisfied with how every-

thing looks, give the script a new name in the text box next

to the Download button. Then click Download and save the

hex file to your hard drive. Drag the file onto your micro:bit,

and voilà! It should work exactly as the preview image did.

Keep experimenting with all of the pieces; as you can see,

you can program some pretty complex behaviors with these

simple puzzle pieces.

Code Kingdoms

Upon first inspection, out of all the programming environ-

ments Code Kingdoms seems to be the most kid-oriented

(when you first bring it up, it shows a Minecraft-style loading

screen). However, as with Code Blocks, the simplicity of the

interface belies the complexity underneath, and it has more

than a few hidden gems that are not immediately appar-

ent. To get started, point your browser to https://www.microbit

.co.uk/app/#create:tomwku (or bring up https://microbit.org/

code/ and click the Code Kingdoms JavaScript icon at the

bottom of the screen; see Figure B.6).

FIGURE B.6: Code Kingdoms icon

The interface is a bit more cluttered than Code Blocks

(Figure B.7).

The pieces and snippets you will use to code are on the

left side of the screen. The workspace where you will work is

FIGURE B.7: Code Kingdoms workspace

https://www.microbit.co.uk/app/#create:tomwku
https://microbit.org/code
https://www.microbit.co.uk/app/#create:tomwku
https://microbit.org/code

Other Programming Environments 159

in the middle, and the micro:bit preview application is on the

right. On the far left of the screen are some additional icons;

the top micro:bit logo icon is the default and shows the var-

ious actions and controls available for your script. The next

icon down looks like a book and gives you access to some

additional libraries: Math, Random, and Globals. Below that,

the circling arrows logo gives access to control flow portions

of script, such as threads, conditionals, and loops. The scis-

sors icon below the book is where you can store snippets of

code for later use, and finally the last icon in the column is a

library of tutorials, ranging from a simple roll-the-dice game

to a more complicated maze runner script.

Perhaps the neatest part of this interface is the slider you

see across the bottom of the workspace. If you have some

code loaded in the workspace, moving the slider changes the

“complexity” (for lack of a better term) of the code shown.

Moving the slider all the way to the left shows some simple

icons relating to the code, and moving the slider all the way

to the right shows the code only. Figure B.8 shows the same

batch of code in all four slider positions.

to preview the script you’ve written. If you now click the A

button on the image with your mouse, the board will display

the message you typed. If you’re satisfied with how every-

thing looks, give the script a new name in the text box next

to the Download button. Then click Download and save the

hex file to your hard drive. Drag the file onto your micro:bit,

and voilà! It should work exactly as the preview image did.

Keep experimenting with all of the pieces; as you can see,

you can program some pretty complex behaviors with these

simple puzzle pieces.

Code Kingdoms

Upon first inspection, out of all the programming environ-

ments Code Kingdoms seems to be the most kid-oriented

(when you first bring it up, it shows a Minecraft-style loading

screen). However, as with Code Blocks, the simplicity of the

interface belies the complexity underneath, and it has more

than a few hidden gems that are not immediately appar-

ent. To get started, point your browser to https://www.microbit

.co.uk/app/#create:tomwku (or bring up https://microbit.org/

code/ and click the Code Kingdoms JavaScript icon at the

bottom of the screen; see Figure B.6).

FIGURE B.6: Code Kingdoms icon

The interface is a bit more cluttered than Code Blocks

(Figure B.7).

The pieces and snippets you will use to code are on the

left side of the screen. The workspace where you will work is

FIGURE B.7: Code Kingdoms workspace

Getting Started with the micro:bit160

FIGURE B.8: Code in four slider positions

The idea here, obviously, is that you can become

acquainted with the code behind the icons, and as you get

more comfortable with coding, you can leave the graphic

interface behind completely.

In the meantime, however, you can experiment with the

interface with the slider set in the graphic mode. It’s a bit

less intuitive, in my opinion, than the Code Blocks interface,

but still very easy to use. When you first bring up the web

page, you’ll see that the function onStart() is preloaded.

This function encapsulates everything that you program so

that it’ll run when the micro:bit powers on. You can create

functions outside of this main function, of course, but just

Other Programming Environments 161

keep in mind that onStart() contains your main program,

similar to the while True() statements we’ve used before.

The Add Event button below it is where you’ll enter other

functions, like roll_dice() from our craps game, for example.

To begin, click the micro:bit logo at the top left to make

sure you’re in the Basic category, then click on the Draw

(Pattern) icon and drag it into the workspace between the

beginning and ending brackets ({ }) of the onStart() func-

tion. Then click on the word Pattern in parentheses and

choose one of the many images available (Figure B.9). When

you’ve chosen your image, click the green check mark to

close the pop-up box.

FIGURE B.9: Choosing an image to draw

Now let’s clear the screen after a few seconds. In the Con-

trol Flow section (the circling arrows at the extreme left of

the screen), click the wait(milliseconds) piece and drag it

into the onStart() function, underneath the microbit.draw()

line. Click the word milliseconds and enter 2000. Then go back

to the Basic category and drag the clear() button into the

workspace.

Getting Started with the micro:bit162

You’re ready for the main program script. Back in the Con-

trol Flow section, find the while (test) { } button and drag

it into your workspace underneath the existing code but still

within the onStart() function brackets. Click on the small

arrow by the word test and select true from the pop-up

window (Figure B.10).

FIGURE B.10: Filling in the while() loop

Now click the circling arrows on the left to access the con-

trol flow blocks and find the if (test) { } conditional block.

Drag it into the while(True) loop. Now go back to the Basic

category on the left, scroll down to the System subcategory,

and drag the buttonAPressed block onto the word test in pur-

ple on the if() conditional block. This is now akin to

if button_a.is_pressed():

in Python. Select another simple task to perform when the

A button is pressed, such as say(value). Then click on the

value prompt and enter a string, such as "You pressed A!".

Other Programming Environments 163

If at any point you make a mistake and need to delete

a block, simply click on it and drag it away from the main

code. A ghostly trash can will appear at the bottom right

of the workspace, and you can drop the block into the can

to delete it. You can also re-input any text or conditionals

you’ve added just by clicking on them again inside the block;

the pop-up you saw in Figure B.10 will reappear and allow

you to choose a different value.

That’s it for a very simple program! If you’re curious to

see what the actual code looks like, move the slider at the

bottom all the way to the right, and you should see this:

function onStart() {
 microbit.
draw(Pattern("01010.1111.1111.01110.00100"));
 wait(2000);
 microbit.clear();
 while (true) {
 if (microbit.buttonAPressed) {
 microbit.say("You pressed A!");
 }
 }
}

As you can see, it’s very similar to Python in commands,

but you’re looking at pure JavaScript here. If you’re comfort-

able using JavaScript, you should definitely experiment more

with the window in this configuration—there’s a lot you can do

that isn’t necessarily available via the basic kid-friendly icons.

Finally, of course, you’ll want to preview the program

and then load it onto your board. To preview it, click the Run

button at the bottom right of the page. The interface will

compile the script and—assuming everything compiles cor-

rectly—will then load it onto the simulated micro:bit on the

right. You can’t test things like shake or compass headings,

but you can make sure that button presses and displays

work right.

Getting Started with the micro:bit164

If you’re satisfied, and if the code loaded without errors

onto the simulated board, click the Compile button at the

bottom to create an actual hex file. After a moment a pop-up

window will let you know your script is ready to download,

and you can save it and flash it onto your device.

 That is a short introduction to the Code Kingdoms web-

based coder. As I said, it’s a complex interface. Although it

definitely presents a kid-friendly appearance, my experience

has been that it really isn’t very intuitive, and it could defi-

nitely use some more fleshed-out tutorials. Still, you may like

it, and I do like that it allows you to jump directly into coding

in JavaScript.

Finally, let’s take a look at Microsoft’s Touch Develop.

Microsoft Touch Develop

To get started with the Touch Develop interface, point your

browser to https://www.microbit.co.uk/app/#create:hrvbin. You’ll

be greeted by the screen you see in Figure B.11.

Like the advanced side of the Code Kingdoms page,

Touch Develop seems to be aimed at introducing you to

the JavaScript foundations behind the scripts you will be

writing. The workspace, complete with a starter script, takes

up the majority of the page. At the bottom is where you’ll

find the snippets, functions, and variables that you can put

into your script, and on the right is the simulated micro:bit

board where you can test your code before uploading it to

your actual device.

There are two main ways to interact with your code: you

can choose snippets from the bottom, which populates

the script bit by bit, or you can actually click in the body

of the script and type your code. When you start typing,

FIGURE B.11: The Microsoft Touch Develop interface

https://www.microbit.co.uk/app/#create:hrvbin

Other Programming Environments 165

however, you’re not left out in the cold; as soon as you type

a letter, the interface gives you up to ten different sugges-

tions as to what you might want to put there (Figure B.12

illustrates what happens when you type t, for example).

FIGURE B.12: Helpful suggestions from Touch Develop

If you’re satisfied, and if the code loaded without errors

onto the simulated board, click the Compile button at the

bottom to create an actual hex file. After a moment a pop-up

window will let you know your script is ready to download,

and you can save it and flash it onto your device.

 That is a short introduction to the Code Kingdoms web-

based coder. As I said, it’s a complex interface. Although it

definitely presents a kid-friendly appearance, my experience

has been that it really isn’t very intuitive, and it could defi-

nitely use some more fleshed-out tutorials. Still, you may like

it, and I do like that it allows you to jump directly into coding

in JavaScript.

Finally, let’s take a look at Microsoft’s Touch Develop.

Microsoft Touch Develop

To get started with the Touch Develop interface, point your

browser to https://www.microbit.co.uk/app/#create:hrvbin. You’ll

be greeted by the screen you see in Figure B.11.

Like the advanced side of the Code Kingdoms page,

Touch Develop seems to be aimed at introducing you to

the JavaScript foundations behind the scripts you will be

writing. The workspace, complete with a starter script, takes

up the majority of the page. At the bottom is where you’ll

find the snippets, functions, and variables that you can put

into your script, and on the right is the simulated micro:bit

board where you can test your code before uploading it to

your actual device.

There are two main ways to interact with your code: you

can choose snippets from the bottom, which populates

the script bit by bit, or you can actually click in the body

of the script and type your code. When you start typing,

FIGURE B.11: The Microsoft Touch Develop interface

Getting Started with the micro:bit166

If you just want to play with the available functions,

using the buttons on the bottom is a good way to become

acquainted with this interface. Starting from the welcome

screen, make sure your cursor is blinking on the line directly

below the function main() line. Click the led button at the

bottom. The code will show the word led, along with the

helpful prompt "we have a led here; did you want to do

something with it?".

Ignoring the smart-aleck interface for a moment, if you look

back at the bottom of the screen, you’ll see that it’s now popu-

lated with things you can do with that LED: plot, unplot, point,

brightness, toggle, and so on. Clicking on plot, for example,

continues to fill in the line of code with led → plot(0, 0), with

the cursor blinking at the first 0. A horizontal bar at the bottom

of the workspace now describes the function you’ve chosen,

how to call it (its parameters), and what it does.

If you change your mind about a line of code, you can

click on the line you don’t like and three icons will pop up,

letting you paste, copy, or cut the code. Cut removes the

line and lets you start over.

Some of the buttons at the bottom are self-explanatory,

like declaring a variable or adding a for loop. Others, how-

ever, can take you deeper down the rabbit hole than you

may care to go, at least until you’re more comfortable with

the board and the interface. For example, try clicking the

Game button.

Once again the interface asks if you’re going to do any-

thing with that nice game object, but now the bottom of the

page is filled with functions like create sprite and add score.

Clicking the create sprite button adds the line game → cre-

ate sprite(2, 2) to your code, which creates a new LED

sprite pointing to the right. start countdown, on the other

hand, adds the line game → start countdown(10000), allowing

Other Programming Environments 167

you to start a game countdown timer. Obviously you can

use the Touch Develop interface to program an entire game

from scratch, using the predeveloped libraries that Microsoft

has made available to you.

If you click the magnifying glass icon located toward the

top of the screen labeled “all APIs,” you’ll see a list of the

various categories of events and functions that you can play

with (Figure B.13) and a short description of what each one

does. There’s a little bit of everything here, from basic func-

tions like displaying strings, to controlling paired devices, to

performing bitwise arithmetic on 32-bit integers. Clicking on

any one of them brings up its associated variables and func-

tions at the bottom of the screen.

FIGURE B.13: Additional libraries of functions

Getting Started with the micro:bit168

Let’s create a basic script and upload it to our device.

From the starting page, click on the empty line below func-

tion main() to bring up the row of functions at the bottom.

Click the while button, which will automatically fill in the

loop with the following:

while true do
 (add code here
 (basic → pause(20)
end while

Clicking on the add code here line will bring up the list

of available functions again; choose the basic button and

then show string. Type Hello, world! in the text box, and the

line will autocomplete with basic → show string("Hello,

world!", 150), which, according to the informational block,

means that it will display the text, one character at a time,

shifting by one column each 150 milliseconds.

That’s a good basic, introductory script. Click the Dis-

miss arrow at the top left of the screen, and you’ll see

some new icons: My Scripts, Run Main, Compile, and Undo.

The My Scripts button takes you to a page of scripts that

you’ve worked on, Run Main runs your program on the sim-

ulated micro:bit board, Compile compiles the script so you

can flash your board, and Undo reverses anything you may

have done. Don’t worry about running this particular script

on the simulator—it’s a very basic script, after all. Rather,

click the Compile button and save the hex file when you

see the message that it’s ready to download. Drag that

downloaded file onto your micro:bit, and voilà! You’ve just

used the interface! Your board should slowly scroll the text

“Hello, world!”

There’s a ton more material here to go through, but this

isn’t a book about these interfaces. All three listed here

Other Programming Environments 169

have some very good tutorials available; if you’re interested

in learning more about them I highly recommend working

through the online lessons. Personally, I prefer the Python

and C++ environments (via mu and mbed), but these envi-

ronments are just as effective.

Index

Symbols
[] (brackets), displaying, 62
<> brackets, yotta command

line, 85

Numbers
3V header pin, 94
16 KB of RAM, 22
32-bit machine, 21

A
“A” and “B” patterns, 11
A button, counting presses, 13
accelerometer

described, 19
features, 54
G-force gestures, 54–55
movement and axes, 54
REPL function, 57
X-, Y-, and Z-axes, 54

accessories, 7–10
alligator clips, 91–92
analog effects, producing, 98–99
animating images, 51–52
apps. See third-party apps
Arduino IDE, 38
ARM Cortex processor, 4
ARM CPU, 20–21

ARM processor, 26–28
arm-none-eabi-gcc compiler, 84
arrows, 67

B
Baker, Howard, 145–147, 150
banana plugs, 92
battery pack, 17–18
BBC (British Broadcasting

Corporation), Make It Digital
Initiative, 4

BBC micro:bit
features, 4
story of, 145–151

BLE (Bluetooth Low-Energy)
antenna, 5, 12, 22–24
specification, 110

BLE.cpp file, creating, 114
“blinky” program, 76–77
Blocks Editor

categories and functions, 155
completed program, 157
environment, 6
features, 153–154
Radio pieces, 155
scripts, 154
show leds piece, 156–158
on start piece, 156–157
while() loop, 156

Getting Started with the micro:bit172

Bluetooth. See also UART and
Bluetooth

client attributes and
services, 119–120

cloning HelloWorld.cpp, 114
compiler, 113
connecting to micro:bit, 118
detecting button presses, 121
“Draw a circle” message, 117
GATT_TABLE, 117
importing programs, 114
initializing on micro:bit, 115
mbed operating

system, 113
memory, 115–116
micro:bit program, 113
MicroBitConfig.h file, 116
naming board, 120
overview, 109–110
pairing experiments, 111
pairing micro:bit to phone,

117–118
pairing process, 119
processor, 20
reading from thermometer, 122
services, 117
using C++, 111
versus WiFi, 110
writing to display, 122

Bluetooth Smart protocol, 22
boards

flashing, 17
processors, 1–2
procuring, 7
resetting, 17

Boolean conditional, 55
bot platform. See micro:bot
brackets ([]), displaying, 62
brightness, LEDs, 98
BTN_* header pins, 94
buttons, features, 52–53

C
C++, 70, 74–75, 87–88, 111
calibrate() function, compass,

57–58
cell phone, growth, 3
“CHASE THE DOT” message, 11
Check button, 46
check mark, displaying, 56–57, 65
C.H.I.P., 3–4
Claessens, Jo, 145
classes, learning about, 74
Classes folder, 74–75
clock displays, mu IDE, 48
Code Kingdoms

Add Event button, 161
Basic category, 161
clearing screen, 161
code, 163
Compile button, 1644
“complexity” slider, 159–160
control flow blocks, 162
deleting blocks, 163
features, 158
functions, 160–161
libraries, 159
main program script, 162
onStart() function, 161
patterns, 161
previewing program, 163
while() loop, 162
workspace, 159

code-completion feature,
33–34

coding environments, 29
COL* header pins, 94
compass

board orientation, 59–60
functions, 58–59
Image.HAPPY, 58
magnitude of magnetic

fields, 60

Index 173

compass/magnetometer,
features, 57

CPUs, processing tasks, 27
craps game, 63–67

D
default program, 11–12. See also

programming micro:bit
devices, flashing, 13
dialout group, mu IDE, 36
diamond shape, displaying,

56–57
dice rolls, simulating, 64–65
DigitalOut document, 75
DIO header pin, 94
display() method, 46
display.show() method, mu

IDE, 47

E
edge connector breakout

board, 7–8, 26. See also GPIO
(general-purpose input/
output) pins

accessing pins in code,
95–96

features, 92–94
GND post, 97
GPIO header pin

descriptions, 94
LED/potentiometer,

96–97
multimeter reading, 96
potentiometer’s value, 100
prototyping area, 95
read_analog(), 96–101
write_analog(), 95–96
write_digital(), 95–96

Edge Connector Motor Driver
Board, 8–9

errors. See Check button
Evothings environment, 123–124

F
filesystem, 60–63
Finder window (Mac), 12
flash memory, 21. See also

memory
flashing boards, 17
flashing devices, 13
frown and smile, 55–56
functions, availability, 65–66

G
games, craps, 63–67
GATT_TABLE, Bluetooth, 117, 131
gcc compiler, installing, 81
get_presses() method, mu

IDE, 53
G-force gestures, accelerometer,

54
GitHub website, 42–43, 55
GND post, edge connector

breakout board, 97
GPIO (general-purpose input/

output) pins. See also edge
connector breakout board

accessing in code, 95–96
alligator clips, 91–92
banana plugs, 92
features, 18–19
location, 5, 25

GPIO header pin descriptions, 94
“GREAT! NOW GET CODING!”

message, 11
Groups folder, 74

H
.h extension, 74

Getting Started with the micro:bit174

Hall, Tony, 151
header pins, 94
heart symbol, 11, 41
“Hello, World!” programs

MicroPython, 31
Microsoft Touch

Develop, 168
mu IDE, 41

“HELLO” program, 10–11
HelloWorld.cpp, cloning for

Bluetooth, 114
help() command, Python

programming language, 74
hex files, opening, 13
homebrew package

management, 83–84

I
I2C (Inter-Integrated Circuit)

protocol, 20, 100–103
IC (integrated circuit), 18, 20
IDEs (integrated development

environments), 29, 33
Image.ARROW, 67
Image.CLOCK2, mu IDE, 48
Image.HAPPY, 58
Image.PACMAN, mu IDE, 49–50
images, mu IDE, 47–52
import os, performing, 61–62
import statements, Python, 74
importing libraries, 64
#include statement, 74–75
indenting lines, mu IDE, 62
inputs, buttons as, 52–53
Intel Edison, 4
IoT (Internet of Things), 2–3, 69

J
JavaScript, 153
Jodrell Bank Observatory, 149

K
Kivy tool, 123–124

L
LEDs. See also status LED

brightness, 98
flashing, 11
patterns, 12
project, 45–52

libraries, importing, 64
lines, indenting, 62
Linux

man pages, 74
yotta customization, 84–85
yotta installation, 79–80

loops
breaking from, 62
craps game, 66

M
macOS

yotta customization, 82
yotta window, 79

magnetic fields, magnitude, 60
magnetometer, 20, 57
main.cpp program, 74–75
Make It Digital initiative, 4
Make It Digital season, 150–151
mbed operating system. See

also yotta command-line
blinky program, 76
Bluetooth, 113
code examples, 72
Compiler button, 70–71
developer account, 70–71
device selection, 72
features, 69–70
microbit-hello-world

program, 72–73
writing code, 70–71

Index 175

memory, 60–61. See also flash
memory

micro:bit
back and front, 15–16, 24–25
connecting to USB port, 10
dimensions, 15
edge connector breakout

board, 26
future, 150
input voltage, 15
obtaining, 7
powering, 4–5
programming, 6
USB micro port, 15

micro:bit app, 112
micro:bit Blue app, 111, 120
MICROBIT device, dragging

scripts to, 13
Micro:bit Education Foundation,

145, 150
Micro:bit Foundation, 6
microbit libraries, yotta

command-line, 86
microbit module, sleep

method, 43
MicroBit object, initializing, 130
microbit-astounding-script
.hex file, 13

MicroBitConfig.h file, Bluetooth,
116

microbit-dal folder and library,
126–127

MicroBit.Image object, mu IDE,
50

microbit-samples code, cloning,
126

micro:bot
completing, 135
program, 136–143
SPST (single-pole-single-

throw) switch, 134

Turtle platform, 134
MicroPython environment

filling in code, 32
Help button, 32
My Scripts icon, 31
screen shot, 7
scripting page, 30
Snippets button, 31–32
USB cable, 31
web editor, 30–33
Zoom buttons, 33

Microsoft Block Editor
environment, 6

Microsoft Touch Develop
events and functions, 167
features, 64
functions, 166
Game button, 166–167
Hello, world! 168
interacting with code,

164–165
interface, 165
led, 166
libraries, 67
paste, copy, cut, 166
script, 168
snippets, 164–165
suggestions, 165

MI:power board, micro:bit, 9–10
MISO header pin, 94
Molex female connector, 18
MOSI header pin, 94
motor driver board

button pins, 106
features, 103–104
input terminal blocks, 107
jumper wires, 104
motor terminals, 105
multimeter, 105–107
pin values and motor

directions, 106

Getting Started with the micro:bit176

power supply, 104
using, 104
voltages, 105–106

mu IDE
application, 35
Arduino IDE, 38
arrows, 67
breaking from loops, 62
brightness control, 41–42
calibrate() function, 57–58
Check icon, 43
checking code, 37–38
clock displays, 48
compass functions, 58–59
craps game, 64–67
dialout group, 36
display() method, 46
displaying heart, 41
display.show() method, 47
downloading and installing,

34–35
driver, 34–35
editor, 37
Files and REPL (Read-

Eval-Print Loop), 39
Flash, Files, and REPL

(Read-Eval-Print Loop),
38, 42

get_*() commands for
compass, 60

get_presses() method, 53
“Hello, World!,” 41
help() command, 40
Help icon, 37
Image.CLOCK2, 48
Image.PACMAN, 49–50
images, 47–52
importing libraries, 64
indenting lines, 62
light versus dark

environments, 37

line of moving dots, 42–43
line.hex file, 43
Linux box, 36
“live-programming”

feature, 39
microbit module, 43
MicroBit.Image object, 50
New, Load, Save icons, 37
newline, 43
open() function, 62
os.listdir() function, 62
Quit icon, 37
random.seed(), 64
REPL function, 40, 74
scroll() method, 47
show() function, 46
show_roll() function, 65
starting, 36
string assignment, 67
text, 46–47
Theme icons, 37
uploading code, 38
was_gesture(), 55–56
while loop, 43
while not loops, 66–67
window panes, 40
Zoom icons, 37

N
NetBeans local compiler, yotta

command line, 87–89
newline, mu IDE, 43
NIC (network interface card), 27
nRF Connect for Mobile,

Bluetooth, 111
NVIDIA Jetson TK1, 1

O
O’Brien, Tim, 149
open() function, mu IDE, 62

Index 177

os.listdir() function, mu
IDE, 62

OV header pin, 94

P
Pac-Man, 49–50
PAD* header pins, 94
Particle Photon, 3–4
Pi Foundation, 149
Pi Zero, 1
pins. See GPIO (general-purpose

input/output) pins; header pins
pip tool, installing, 79–80
pixel animation, 52
power ports, 17–18
processors, ARM Cortex, 4
program logic, establishing, 74
programming environments

Blocks Editor, 153–158
Code Kingdoms, 158–164
Microsoft Touch Develop,

164–169
programming languages, 29
programming micro:bit, 6. See

also default program
programs, adding, 13
pushbuttons, 52–53
PWM (pulse width modulation),

98–99
Python programming language,

29–30
Boolean conditional, 55
functions, 32
help() command, 74
import statements, 74
tuple, 54

R
RAM, 22
random.seed(), mu IDE, 64

Raspberry Pi, 1, 4, 145, 149
read_analog(), edge connector

breakout board, 96–101
REPL function

accelerometer, 57
mu IDE, 74

reset button, 17
RISC (Reduced Instruction Set

Computer), 27
rolling dice, simulating, 64–65

S
SBCs (single-board computers),

1, 26
SCK header pin, 94
SCL header pin, 94, 101
scripts, writing, 13
scroll() method, mu IDE, 47
SDA header pin, 94, 101
see text comments, craps

game, 66
sensors, 19–20, 57
“SHAKE” message, 11
show() function, mu IDE, 46
show_roll() function, mu

IDE, 65
sleep method, microbit

module, 43
smile and frown, 55–56, 58
SoftBank, 28
Sparks, Michael, 145
SPST (single-pole-single-throw)

switch, micro:bot, 134
status LED, 17. See also LEDs
Stockdale, Gareth, 145, 148
strings, assigning, 67
Structs folder, 74

T
text, mu IDE, 46–47

Getting Started with the micro:bit178

text editors, 13
third-party apps, 123–124
Touch Develop. See Microsoft

Touch Develop
tuple, Python programming

language, 54
Turtle platform, 134

U
UART and Bluetooth. See also

Bluetooth
button events, 130–131
disabling security, 131–132
disabling whitelist, 132
enabling, 125–126
GATT table, 131
hex file, 132
Import Into Computer, 127
Import Library, 127
MicroBitConfig.h file, 131
microbit-dal folder, 126
microbit-samples code, 126
onConnected() function, 130
onConnected() function, 130
serial communication,

132–133
smartphone app, 132
turning off services, 131

UART.cpp file, 128–130
Ubuntu. See Linux
USB microcontroller, 18
USB port

connecting to, 10
locating, 15
MicroPython environment, 31

W
websites

Bluetooth, 110

Evothings Studio program, 123
GitHub, 42–43
mbed operating system, 70
NetBeans local compiler,

87–88
while loop, mu IDE, 43
while not loops, mu IDE, 66–67
WiFi, versus Bluetooth, 110
Windows

yotta customization, 81–82
yotta interface, 78

Windows Explorer window, 12
Woolley, Martin, 111, 120
write_analog(), edge connector

breakout board, 95–96
write_digital(), edge

connector breakout board,
95–96

Y
YES symbol, displaying, 65
yotta command line. See also

mbed operating system
<> brackets, 85
/bin subdirectory, 81
customizing, 80–85
default answers, 85
executable, 85–87
features, 77
Hello, world application,

85–87
installing, 78–80
local compiler, 87–89
main.cpp program, 87
microbit libraries, 86
NetBeans local compiler,

87–89
source/ folder, 86–87

	Cover
	Titlepage
	Copyright
	Dedication
	Contents
	Acknowledgments
	About the Author
	Chapter 1: Introduction to the micro:bit
	Chapter 2: A Tour of the micro:bit
	Chapter 3: Programming Using MicroPython
	Chapter 4: Some Basic Projects
	Chapter 5: The mbed Operating System
	Chapter 6: Interfacing with the GPIO Pins
	Chapter 7: Using Bluetooth
	Chapter 8: Serial Bluetooth Communication and the micro:bot
	Appendix A: The Story of the BBC micro:bit
	Appendix B: Other Programming Environments
	Index

