

GREENFOOT IN 4 HOURS

A Quick Start Guide

CALIFORNIA MESA SCHOOLS PROGRAM

2015

Version 2.0

October 8, 2015

For questions about this document contact:

Jeff Mellinger

San Diego State MESA Center

hoovermellinger@gmail.com

mailto:hoovermellinger@gmail.com

1

Contents
Introduction ... 2

The Greenfoot Environment .. 2

Creating New Subclasses .. 3

Developing a Game Piece by Piece: MoveAndTurn ... 5

Move and Turn: A better way .. 7

Wrapping an Object ... 7

Disappear and Appear .. 9

Random Motion .. 11

Shooting ... 12

Scoreboard ... 14

Putting It All Together: A Complete Game .. 17

Conclusion: So, Now What?.. 23

Appendix A: Why learn Java and how does Greenfoot help? ... 24

Appendix B: Setting Up Greenfoot .. 25

Appendix C: Dealing with Errors .. 25

Appendix D: How Do I Know What Methods Are Available To Use? 26

2

Introduction
This booklet is designed to quickly get you up and running with a basic game in Greenfoot.

Rather than lengthy explanations of the language, the approach we will use is to simply present

you with the code you need accompanied by annotations. You might not completely understand

why a segment of code works the way it does but this understanding will come with further

study. We just want to get you up and running with a basic game as a foundation for further

exploration of Greenfoot.

If you don’t know what the Java programming language is and how Greenfoot can be used to

learn Java, you can find this in Appendix A: Why Learn Java and How Does Greenfoot Help?.

If you have not yet loaded Greenfoot and the Java JDK8 compiler onto your computer (sounds

complicated but it’s not), then go to Appendix B: Setting up Greenfoot. If you do have

Greenfoot and Java already loaded then you are ready to get started developing your game. If

you know how to open a new folder, create classes, and bring objects into the world, then skip to

the section Developing a Game Piece by piece: MoveAndTurn.

The Greenfoot Environment
Once you complete downloading Greenfoot and the Java JDK8 compiler, a Greenfoot icon will

appear on your desktop. When you click the icon you will see the screen shown in Figure 1:

Figure 1. The Greenfoot starting screen

3

Click on Scenario

and then New. You

will see a New

Scenario dialog box,

as shown in Figure 2.

In the Folder Name

line, highlighted in

blue, type the name

of your new game

then press the Create

button. We will

create a folder called

MoveAndTurn.

When you press

create, the screen will

briefly disappear then appear again with the name of your folder at the top. (Note: You do not

need to save Greenfoot folders. They are automatically saved when you close the folder or exit

Greenfoot. To actually close a Greenfoot folder you must go to Scenario and click Close).

Creating New Subclasses
On the right side of

the screen you will

see the class

diagram with two

rectangles; one

labeled World and

the other labeled

Actor. The World

class will simply

serve as the

background for

your game though

we will later add

some code to create

a scoreboard. The class Actor is where you will do all of your game programming. First, right

click on World and a pulldown menu will appear. Select New Subclass and the New Class

dialog box, as shown in Figure 3, will appear.

Figure 2. When you open a new folder you will give it a name

 Figure 3. New Class dialog box with backgrounds and objects

4

For the World class

choose from the

Backgrounds in the

Image Categories. A

light colored

background is

desirable when you

are new to Greenfoot

so you can clearly see

the movement of your

actors. For this

example, the

background

“bluerock” was

chosen (we highly recommend that you use the same names and objects as this tutorial in order

to avoid confusion). You must give the world a name on the line that reads “New class name:”

Type OceanWorld then click OK and you can see that OceanWorld appears as a subclass of

World in the class diagram. This means that OceanWorld will inherit all of the characteristics of

World but you can then add more that are unique to it. You still don’t see anything in the game

area. You must press the Compile button and OceanWorld will appear as shown in Figure 4.

Anytime you see diagonal lines across any of the rectangles in the class diagram you must

compile. For now, we are done dealing with World and will move on to the actors.

Next, right click on Actor and left click on New Subclass. Choose an object to be your first

actor. We will use a boat in this example. Left click on transport in the Image Categories

section. Find the object labeled Boat02-4.png and click on it. In the “New class name” line

give it the name Boat, then click OK. You will see a new subclass of Actor called Boat. You

again see diagonal lines so you must compile.

After you compile, right click on the Boat rectangle and you will see an option New Boat().

Left click on New Boat() and you will see a boat image appear that you can drag out into the

world. If you press shift and continue to click you can make more boats appear. For now, just

stick to one.

Figure 4. OceanWorld after pressing the compile button

5

Developing a Game Piece by Piece: MoveAndTurn
Many games consist of about a half dozen basic elements. These include:

1. Moving and turning under the user’s control

2. Wrapping around the world or bouncing off the edge of the world

3. Disappearing and Appearing

4. Random Motion

5. Shooting

6. Keeping Score

A company named Namco once made a phenomenal amount of money marketing a game called

Pac-Man that contained nothing more than these functions. We will introduce these functions

one by one, independent of each other. In this way you will create a library of game utilities that

can be used in other games you create. When you right click on the Boat class rectangle you

will see the option Open Editor. Left click on Open editor. When you first open the code

editor of any actor you will see the following as shown in Table 1.

Code Comments

import greenfoot.*;

/**

 * Write a description of class Boat here.

 *

 * @author (your name)

 * @version (a version number or a date)

 */

public class Boat extends Actor

{

 /**

 * Act - do whatever the Boat wants to do. This method is called whenever

 * the 'Act' or 'Run' button gets pressed in the environment.

 */

 public void act()

 {

 // Add your action code here.

 }

}

We are inside of the Boat class so we must import

Greenfoot into this class.

/* is how comments are made in Greenfoot.

Comments are not a part of the program, they are just

notes for you or others reading your code. These will

be omitted in subsequent tables in this booklet though

you will see them in your code editor.

We declare that Boat is a subclass of Actor. Public

means that it can be accessed by other actors in the

game. A class contains the code for a specific type of

object, such as a boat or a pirate.

{ and } are called curly braces or just braces. Braces

must always be used in pairs. They separate code into

organized pieces.

The act method is the “brain” of the class. Boat will

not do anything that is not listed in the act method.

You will replace the comment //Add your action

code here with your methods for the Boat to perform.

 Table 1. Code editor screen as is appears when opened in Actor or one of its subclasses

The first action we want our boat to perform is to be able to move and turn at our command. To

do this we will write the code in the act method.

6

MoveAndTurn
The code to make our boat move about and turn on our command is shown below.

Code Comments
import greenfoot.*;

public class Boat extends Actor

{

public void act()

 {

 if(Greenfoot.isKeyDown("left")) {

 turn(-5);

 }

 move(1);

 if(Greenfoot.isKeyDown("right")) {

 turn(5);

 }

 move(1);

 }

}

First, Greenfoot must be brought into every class in

order to use predefined Greenfoot commands.

This line defines Boat as a subclass of Actor. This

means that all of the methods that Actor has built

into it, such as “turn” or “move” will be inherited

by Boat. Public means that it can be accessed by

other classes that we will define later such as Pirate

and Bomb.

The method called “act” is the brain of the class.

Only code that appears in act will run.

This method uses an “if” conditional statement.

The program looks to see if the left key is pressed

down. The boat will turn left only if this is true.

The “isKeyDown” method is a Greenfoot class

command, not a command of the Actor or Boat

classes, so the word Greenfoot must be typed

before it.

“Left” refers the left arrow key. In this case, “Left”

is an argument (meaning input) of the isKeyDown

method.

What this says is that if the left key is pressed

down, turn 5 degrees counterclockwise. The

number “-5” is called an argument; it is an input

that must be given to the method turn to determine

how far the Boat should turn.

The move(1) command comes next but it is outside

of the braces that contain the turn(-5) command.

This means that the boat will move whether or not

the left key is pressed.

If the right key is pressed then the boat will turn 5

degrees clockwise.

Again, move(1) is outside of the braces that contain

the turn(5) command. It will be executed whether

or not the right key is pressed. So, if neither key is

pressed, the boat will move straight.

Table 2. Code and comments for the moveAndTurn method

When you have completed typing the code, press the compile button. There are two compile

buttons; one in the code editor and one on the main screen. If you compile from the Code Editor

and your code compiles properly you will see the message “Class compiled-no syntax errors”:

Congratulations! You can now right click on Boat and left click on newBoat(), then drag the

Boat image out into the OceanWorld. Now, press the “run” button to start the program and

7

turn the Boat using the right and left arrow keys. There is a good possibility, however, that your

code did not compile properly. If this is true, see Appendix C: Dealing with Errors. Knowing

what methods are available for you to use can be a little confusing at first. You can read more

about this in Appendix D: How Do I Know What Methods Are Available to Use?

MoveAndTurn: A better way
Now that you have gotten your program running you can learn a better way to structure your

code. Writing all of your code in the act method makes adding and removing methods messy. It

is better to write your code down below the act method and then “call” the method up to the act

method when it is needed. As you add more and more methods to a class, you will see the

advantage of organizing your code in this way. The code below, which performs the same

moveAndTurn method, illustrates this.

Move and Turn (Preferred Method)

Code Comments
import greenfoot.*;

public class Boat extends Actor

{

public void act()

 {

 moveAndTurn();

 }

 public void moveAndTurn()

 {

 if(Greenfoot.isKeyDown("left")) {

 turn(-5);

 }

 move(1);

 if(Greenfoot.isKeyDown("right")) {

 turn(5);

 }

 move(1);

 }

}

In this version of the previous method, which performs

exactly the same function as the original method, we gave the

method the name “moveAndTurn” (the name of the folder

has no bearing on the name of the methods inside).

We now use a call to bring moveAndTurn up to the act

method when we need it. The Java naming convention for

methods is for the first letter of the first word to be lower

case and the first letter of subsequent words to be

uppercase—no spaces.

“public void moveAndTurn()” is called the signature line.

The method moveAndTurn is public so it can be accessed by

other classes. It returns “void” which means it performs an

action and does not give you back any information. Also, it

has two parentheses with nothing inside which means that it

does not require any arguments (inputs).

This section is called the body of the moveAndTurn method.

The same code used in the previous version is now down

below the act method.

Table 3. Illustration of MoveAndTurn code using a call from the act method.

Wrapping an Object
When an object reaches the edge of your world there are two possibilities. First, it can bounce

off of the edge according to some set of rules. Second, it can wrap around; that is, it goes out of

one side and comes back in the other side. In this tutorial, we will use the second alternative.

Create a new folder called Wrap. In order to write the code for this routine, let’s look at the

coordinate system used for the world. The default size of the world is 600 units wide by 400

units high. These dimensions can be changed in the code editor for OceanWorld but we have left

them as is for this tutorial. The positive x-axis moves from left to right, just as it does in

8

conventional graphing. The y-

axis, however, moves from top

to bottom. Hence, the

coordinates of the corners for

the world are as shown in

Figure 5. Now we can write

the code to make the boat exit

any point of the world and

enter the opposite side while

traveling in the original

direction. First, create a

subclass of World called OceanWorld and a subclass of Actors called Boat. Below is the code.

Boat

Code Comments
import greenfoot.*;

public class Boat extends Actor

{

 public int x;

 public int y;

 public void act()

 {

 wrapAround();

 }

 public void wrapAround()

 {

 x = getX();

 y = getY();

 if (x == 599)

 setLocation(0, y);

 if (y == 399)

 setLocation(x, 0);

 if (x == 0)

 setLocation(599, y);

 if (y == 0)

 setLocation(x, 399);

 move(1);

 }

}

Before we even enter the act method we must declare any variables we will use. If

we don’t, then Java will think these are just the letters x and y. A variable is a

space in memory that will hold a number we want to use later. These variables are

public, so they can be accessed by any other class. Int means they will hold an

integer value data type. Other possible data types are Boolean and string.

The only call the act method makes in this folder is wrapAround, the name of the

method. The method name and the folder name do not need to be the same.

Now, we are below the act method and must declare our new method. It is public

so it can be accessed from anywhere in our game and it returns a void output

meaning it does not give you back a number value, it just performs an action.

The wrapAround method will use the getX() and getY() methods. These methods

have already been defined in Greenfoot and can be accessed by any actor. These

will get the x and y coordinates of the boat. Once they have done this, we need a

place to put them. This is the purpose of the variables x and y. Variables are

simply place holders for data.

Now, wrapAround will ask a series of questions about the position of the boat:

If the boat is at x-coordinate 599 (the far right edge of the world). . .

. . . then move its location to x = 0 (the far left edge) and the current value of y.

Boat will continue moving in the same direction.

If the boat leaves the world at the y = 399 (the bottom of the world), then

setLocation returns it to y = 0 (the top of the world) at the same location of x and

moving in the same direction.

If the boat leaves the world at x = 0 (the left side of the world), then setLocation

returns it to x = 599 (the right side of the world) at the same location of y and

moving in the same direction. The image in Figure 6 illustrates this.

If the boat leaves the world at y = 0 (the top of the world), then setLocation returns

it to y = 399 (the bottom of the world) at the same location of x and moving in the

same direction. No matter which of the four options is chosen, the boat will move

one unit.

Table 4. Code for wrapping an object

(0, 0) (600, 0)

(0, 400) (600, 400)

Figure 5. Coordinate system for a Greenfoot world

9

A few points about the code in this method:

1. Line Spacing

A lot of spaces were made between lines of code in the previous folder. This was done to

make the code and comments more readable. Greenfoot is picky about a lot of things but

not this. You can leave as much space between lines as you would like.

2. The difference between “=” and “==”

The equals sign (=) assigns a value to a variable. For example, x = 4 assigns the number

4 to the variable location x. The double equals sign (==) asks a true or false question but

does not assign a value. For example, x == 4 asks “does the value now in variable x

equal 4?” If it does, then “true” will be returned. If it does not, then “false” will be

returned. True or false returns are called Boolean returns.

3. How a computer counts

When the program counts to 400 it starts at 0 and ends at 399. Similarly, counting to 600

starts at 0 and ends at 599. This is why the numbers 399 and 599 are used for the bottom

and right sides of the world, respectively.

The method you just wrote will cause the Boat to leave any side of the world and return to the

other side. You cannot, however, use the arrow keys because the moveAndTurn code has not

been included. After you compile the Wrap folder drag a boat into the world and press

Run. The Boat will exit the right side and return on the left side. We will combine the

moveAndTurn and wrapAround methods when we put our final game together.

Disappear and Appear
Many games involve making an object disappear and possibly reappear. Create a new folder

called Disappear. You will create a subclass of World called OceanWorld and an actor

called Bomb (use a ball from Objects in the New class dialog box) and an additional actor

called Pirate. When the position of the bomb and pirate intersect the pirate will disappear then

(600, 400)

(600, 0) (0, 0)

(0, 400)

Position (0, y): The

boat exits at x = 0

(the left side) and

at some position y

moving in a

particular direction

Position (599, y): The

boat returns at x = 599

(the right side) and at

the same position of y

moving in the same

direction

Figure 6. Object leaving the left side of the world and returning to the right side

10

reappear at a random location. The pirate object does not need any code modification. Copy the

following code into the code editor for Bomb:

Bomb

Code Comments
import greenfoot.*;

public class Bomb extends Actor

{

 public int a;

 public int b;

 public void act()

 {

 move(1);

 pirateDisappearAppear();

 }

 public void pirateDisappearAppear()

 {

 Actor pirate = getOneObjectAtOffset(0, 0, Pirate.class);

 if(pirate != null) {

 getWorld().removeObject(pirate);

 a = Greenfoot.getRandomNumber(599);

 b = Greenfoot.getRandomNumber(399);

 getWorld().addObject(pirate, a, b);

 }

 }

}

We will need two variables for this method. A variable is a

holding place for data (numbers, letters, or words). These

will be the x and y coordinates for a random position in the

world. These variables are public so that they can be

accessed from any of the objects in our game. We must also

declare the type of data a and b will hold. Since they will

hold an integer number we declare the data type “int.”

The act method makes the Bomb move and makes a call to

pirateDisappearAppear.

The method pirateDisappearAppear is public (can be used

anywhere in the program) and void (performs an action, does

not return a number). Empty parentheses mean that

pirateDisappearAppear does not need an argument (input).

The object that will disappear is the pirate. This asks if the

Ball and Pirate are offset by (0, 0) meaning that they are in

the same place. If this has happened then a “true” will be

assigned to pirate.

This line is read “if pirate does not equal nothing” (so, it must

equal something—it’s “true”). The “!=” symbol means “does

not equal.” This means that if pirate holds a “true” from the

previous line then the following four lines will be carried out.

We are in the Bomb class but the pirate is removed from the

World, not from the Bomb. As a result, we must call in the

world in order to remove an object (pirate). If all we want to

do is make the pirate disappear, then we are done.

If we wish to make the pirate reappear at a random location

we get a random number between 0 and 599 for the x-

coordinate and assign it to variable a. We then get another

random number between 0 and 399 for the y-coordinate and

assign it to variable b. getRandomNumber is a Greenfoot

method, not a method of actor, so we must put Greenfoot

before it. We use a and b for variables because we have

already used x and y in an earlier folder which will later be

combined with this one.

We now go out and get the world because we are adding the

Pirate to the world, not to the Bomb. The arguments (inputs)

are the object (pirate), the x-coordinate (a), and the y-

coordinate (b). This places the pirate at a random location in

the world.

Table 5. Code for making an object disappear and appear

Drag a Pirate into the center of the world. Now, drag a Bomb immediately to the left of the

Pirate. When you press run the Bomb will move to the right and intersect with the Pirate. The

Pirate will disappear then reappear at a random location in the world.

11

Random Motion
Random motion can be used for an actor that you do not control but want to move freely around

the board. Create a new folder called Random. Create a world called OceanWorld and an

actor called Pirate, using the skull symbol. We will give the pirate a random motion, as

follows:

Pirate

Code Comments
import greenfoot.*;

public class Pirate extends Actor

{

 public void act()

 {

 random();

 }

 public void random()

 {

 if (Greenfoot.getRandomNumber(100) < 40)

 {

 turn(30);

 } else if (Greenfoot.getRandomNumber(100) > 60)

 {

 turn(-30);

 }

 {

 move(5);

 }

 }

}

We create a call in act to a method called random, which will

be defined below.

random can be accessed from any other class (public) and

performs an action (void).

Greenfoot contains a command for creating a random

number. getRandomNumber(100) means that the number

will be between 0 and 99, inclusive. If the number is less

than 40, then the pirate will turn 30 degrees clockwise. . . .

. . . or else, if the random number is greater than 60, then the

pirate will turn 30 degrees counterclockwise

. . . otherwise, if the random number is between 40 and 60,

the pirate will not turn.

 No matter which of these three events occurs, the pirate will

move 5 units.

Table 6. Code for creating random motion

12

Shooting
Shooting is a common feature of many games. Shooting consists of three actors: a shooter (the

Boat), the “bullet” (the Bomb), and a target (the Pirate skull). Create a new folder called

Shooter. Create a world called OceanWorld. Create three Actor subclasses: Boat,

Pirate(skull), and Bomb (represented by a ball).

Boat

Code Comments
import greenfoot.*;

public class Boat extends Actor

{

 Bomb bomb = new Bomb();

 public void act()

 {

 fireOnCommand();

 }

public void fireOnCommand()

 {

 if (Greenfoot.isKeyDown("f"))

 {

 World OceanWorld = getWorld();

 OceanWorld.addObject(bomb, 0, 0);

 bomb.setLocation(getX(), getY());

 bomb.setRotation(getRotation());

 }

 }

}

The Boat creates the Bomb so a variable called bomb must be

declared inside of the Boat class. This odd wording is how

one class is called into another class. We won’t try to explain

it but you will see it in future classes.

The only method in act is the fireOnCommand() call.

fireOnCommand() is public to the program and performs an

action (void).

Using keyboard keys is a function of Greenfoot. Actors do

not have this method available. As a result, Boat must call in

Greenfoot in order to use the isKeyDown method. The

argument (input) for this method in this case is the letter “f”.

Objects appear in the world, so the Boat must go out and

bring in the world which is called OceanWorld.

OceanWorld adds the object Bomb at the same location as

the boat (0, 0 offset).

Once we tell the Bomb to appear under the boat, we use

getX() and getY() to determine the current position of the

Boat. Then the starting location of the bomb is set at this

location.

This line means that getRotation (the direction the Boat is

pointing) is used as the argument to set the direction

(setRotation) of the Bomb. In this way, the Bomb will be

pointed in the same direction as Boat and will, therefore,

move in the direction the Boat is pointing.

Table 7. Code for the shooter (Boat) in the Shooter folder

13

Bomb

Code Comments

import greenfoot.*;

public class Bomb extends Actor

{

 public void act()

 {

 boom();

 }

 public void boom()

 {

 move(3);

 Actor pirate = getOneIntersectingObject(Pirate.class);

 if(pirate != null) {

 World OceanWorld = getWorld();

 OceanWorld.removeObject(pirate);

 OceanWorld.removeObject(this);

 }

 else if(isAtEdge()) {

 World OceanWorld = getWorld();

 OceanWorld.removeObject(this);

 }

 }

}

Bomb acts as the “bullet” in the shooting

process. It is created in the Boat actor. Once it

is created, the code within the Bomb actor does

three things:

1. Makes Bomb move

2. When Bomb intersects with its target

(Pirate) both the Bomb and the Pirate

objects disappear.

3. Bomb disappears when it reaches the

edge of the world.

The only item in the act method is the boom

call.

boom is public to the game and performs an

action (void).

The first thing the Bomb does once it is created

is move. The only condition is that the Bomb

must move faster than the Boat.

This creates a variable pirate and places a

“true” in this variable if the Bomb intersects

any Pirate object.

This line states “If pirate does not equal

nothing” meaning that the Bomb is intersecting

with a Pirate.

Then the Bomb must go out and get the world

to remove the Pirate and itself.

The world removes the Pirate.

The world also removes the Bomb (referred to

as “this” since we are in the Bomb class).

If there is no pirate at the Bomb’s current

location then Bomb continues to move until it

reaches the edge of the world. If this condition

is true, then the program brings in OceanWorld

and removes the Bomb at any edge of the

world.

Table 8. Code for the Bomb in the Shooter folder

Pirate

Code Comments

import greenfoot.*;

public class Pirate extends Actor

{

 public void act()

 {

 }

}

The Pirate is the target and does not need any code.

Table 9. The Pirate class does not require any additional code

14

Once you successfully compile, drag a Pirate into the world and a Boat immediately to the

left of the Pirate (do not drag a bomb into the world). Again, you cannot steer the Boat so it

must begin pointing at the Pirate. After you press Run, press the “f” key and see the Bomb

appear, move to the right, and then disappear along with the Pirate when they intersect.

Scoreboard
Creating the

scoreboard involves

some advanced

Greenfoot concepts.

You will be given

the code for creating

the scoreboard but

explanations will not

be detailed. We will

have the score

increase by three

points whenever a

bomb strikes a

pirate. Create a

new folder called Scoreboard, create OceanWorld as a subclass of World, then create a

subclass of actor called Counter to serve as the scoreboard. Do not assign an object to

Counter. In addition, create subclasses of Actor called Pirate, Boat, and Bomb.

OceanWorld

Code
import greenfoot.*;

public class OceanWorld extends World

{

 Counter counter = new Counter();

 public OceanWorld()

 {

 super(600, 400, 1);

 Prepare();

 }

 public Counter getCounter()

 {

 return counter;

 }

 private void Prepare()

 {

 addObject(counter, 100, 40);

 }

}

We are going to bring the counter into the world using this

code.

OceanWorld is 600 pixels wide and 400 pixels high. Motion

is in increments of 1 pixel. Notice that OceanWorld does not

contain an “act” method because it is not an Actor.

The following code prepares the counter to be called by the

Bomb and to function as directed in the Bomb class.

The upper left corner of the scoreboard (counter) will be

located at the coordinate (100, 40) near the upper left-hand

side of OcenaWorld.

Table 10. Code for OceanWorld required to bring the scoreboard into the world

 Figure 7. Class diagram for the Counter folder

Figure 8. Class diagram for GameFinal

15

Boat

Code Comment

import greenfoot.*;

public class Boat extends Actor

{

 Bomb bomb = new Bomb();

 public void act()

 {

 fireOnCommand();

 }

public void fireOnCommand()

 {

 if (Greenfoot.isKeyDown("f"))

 {

 World OceanWorld = getWorld();

 OceanWorld.addObject(bomb, 0, 0);

 bomb.setLocation(getX(), getY());

 bomb.setRotation(getRotation());

 }

 }

}

This class contains the same code for Boat as found in the

Shooter routine

Table 11. Code for the Boat to create the Bomb

Bomb

Code Comment
import greenfoot.*;

public class Bomb extends Actor

{

 public void act()

 {

 boom();

 }

 public void boom()

 {

 move(3);

 Actor pirate = getOneIntersectingObject(Pirate.class);

 if(pirate != null) {

 World OceanWorld = getWorld();

 OceanWorld.removeObject(pirate);

 OceanWorld oceanworld = (OceanWorld)OceanWorld;

 Counter counter = oceanworld.getCounter();

 counter.addScore();

 oceanworld.removeObject(this);

 }

 }

}

All of the code used in this folder is the same as the

Bomb code used in the Shooter section with the

addition of the scoreboard counter code shown

here.

In addition, the scoreboard must add the score

before the Bomb is removed from the world shown

here. If the bomb is removed before the scoreboard

is changed then the entire program will abort.

Table 12. Code for the Bomb, which calls the counter to add to the score

16

Counter

Code Command
import greenfoot.*;

import java.awt.Color;

public class Counter extends Actor

{

 int score = 0;

 public void act()

 {

 setImage(new GreenfootImage("Score: " + score, 24,

Color.GREEN, Color.BLACK));

 }

 public void addScore()

 {

 score = score +3;

 }

}

As with all classes, we import Greenfoot. In addition, we

want to use a feature that Greenfoot does not contain, so we

must import the color utility used for the scoreboard.

When we create the Counter class, we do not assign any

object to it (such as a boat or a skull).

We create an integer variable called score. We also set the

beginning value of score at “0.” This is called “initializing” a

variable.

We use the predefined Actor method “setImage” to create the

image of the scoreboard. The argument for setImage is

GreenfootImage. GreenfootImage, in turn, has five

arguments: First, it will display the word “Score,” then the

numeric value held in the variable score will be displayed.

The characters will be 24 pixels high. Finally, the text will

be green and the background will be black. Remember, the

position of the scoreboard was set in the OceanWorld class.

addScore is the method we use to increase the score. Every

time a bomb hits a pirate the score will increase by 3 points.

Notice that the method addScore is not executed here in the

Counter class, but rather, in the Bomb class.

This line reads, “the new score equals the old score plus

three.”

Table 13. Code for the Counter that creates the scoreboard

Pirate

Code Comments

import greenfoot.*;

public class Pirate extends Actor

{

 public void act()

 {

 }

}

The Pirate is the target and does not need any code.

Table 9. The Pirate class does not require any additional code

 Now, place a Pirate into the world and a Boat immediately to its left. Press Run then press

the “f” key. When the Bomb intersects the Pirate, it will cause the score to increase by three.

17

Putting It All Together: A Complete Game
We can now combine all of the folders we have created into an integrated game. Create a new

folder for your game called GameFinal. Create a subclass of World called OceanWorld

and use bluerock as your background. Create the following subclasses of Actor: Boat,

Pirate (skull), Anchor, Bomb (a ball) and Counter (no object). The game’s actors will

perform the following functions:

Boat: Boat is the actor that you control using left and right arrow keys. Boat will

wrap when it reaches the edge. When you press the “f” key, a bomb will be

created.

Bomb: Bomb can only appear at the command of Boat. Once Bomb appears it

immediately begins moving in the direction that Boat is pointing. If Bomb

intersects with Pirate, both bomb and Pirate will disappear. In addition, when

Bomb intersects with Pirate then the scoreboard counter will increase. If

Bomb reaches the edge of the world before intersecting with a Pirate then

Bomb will disappear. Bomb will have no effect on Boat or Anchor if it

intersects with either of these.

Anchor: Anchor is a safe harbor for the boat and will disappear and reappear when

Boat intersects with it. This can add points to the score though this was not

done in this game. Anchor will wrap when it reaches the edge of the world

and has no effect on Pirate or Bomb.

Pirate: Pirate moves randomly and can sink the Boat. In our game the boat will

simply reappear at a random location and the game continues. A negative

score could be assigned to this but we did not do this.

Counter: Counter is a class that appears and visibly keeps score. No object is assigned

to the Counter class.

OceanWorld: OceanWorld is the background and holds the dimensions of OceanWorld as

well as the location of the scoreboard.

18

The class diagram will appear as follows:

The code for each class follows.

OceanWorld

Code Comments
import greenfoot.*;

public class OceanWorld extends World

{

 Counter counter = new Counter();

 public OceanWorld()

 {

 super(600, 400, 1);

 Prepare();

 }

 public Counter getCounter()

 {

 return counter;

 }

 private void Prepare()

 {

 addObject(counter, 100, 40);

 }

}

The code here is the same as in the OceanWorld class used in

the Scoreboard section.

Table 14. Code for OceanWorld in GameFinal

Figure 8. Class diagram for GameFinal

19

Counter

Code Counter
import greenfoot.*;

import java.awt.Color;

public class Counter extends Actor

{

 int score = 0;

 public void act()

 {

 setImage(new GreenfootImage("Score: " + score, 24, Color.GREEN, Color.BLACK));

 }

 public void addScore()

 {

 score = score +3;

 }

}

We use the same code for

Counter as in the Scoreboard

section

Table 15. Code for Counter in GameFinal

Bomb

Code Comments
import greenfoot.*;

public class Bomb extends Actor

{

 public void act()

 {

 boom();

 move(10);

 }

 public void boom()

 {

 Actor pirate = getOneIntersectingObject(Pirate.class);

 if(pirate != null)

 {

 World OceanWorld = getWorld();

 OceanWorld.removeObject(pirate);

 OceanWorld oceanworld = (OceanWorld)OceanWorld;

 Counter counter = oceanworld.getCounter();

 counter.addScore();

 OceanWorld.removeObject(this);

 } else if(isAtEdge()) {

 World OceanWorld = getWorld();

 OceanWorld.removeObject(this);

 }

 }

}

The code for Bomb is the same as that found in the

Scoreboard section with an addition.

Table 16. Code for Bomb in GameFinal

20

Pirate

Code Comment
import greenfoot.*;

public class Pirate extends Actor

{

 public int e;

 public int f;

 public int m;

 public int n;

 public void act()

 {

 wrapAround();

 boatDisappearAppear();

 random();

 }

public void boatDisappearAppear()

 {

 Actor Boat = getOneObjectAtOffset(0, 0, Boat.class);

 if(Boat != null) {

 World OceanWorld = getWorld();

 OceanWorld.removeObject(Boat);

 e = Greenfoot.getRandomNumber(599);

 f = Greenfoot.getRandomNumber(399);

 getWorld().addObject(Boat, e, f);

 }

 }

 public void random()

 {

 if (Greenfoot.getRandomNumber(100) < 40)

 {

 turn(30);

 } else if (Greenfoot.getRandomNumber(100) > 60)

 {

 turn(-30);

 }

 {

 move(5);

 }

 }

 public void wrapAround()

 {

 m = getX();

 n = getY();

 if (m == 599)

 setLocation(0, n);

 if (n == 399)

 setLocation(m, 0);

 if (m == 0)

 setLocation(599, n);

 if (n == 0)

 setLocation(m, 399);

 }

}

We create four variables, all integers. e and f are coordinates

of a random position where Boat will reappear. m and n are

the coordinates for wrapAround of the Pirate. We use

different letters than in other methods because they are public

and we don’t want another method to change a variable.

The code in the act method is simple and consists only of

calls to code that we have already written. The only new

method is boatDisappearAppear, which is the same method

applied to the Pirate back in the Disappear and Appear

section.

random was defined in the Random Motion section.

wrapAround was defined in the Wrapping an Object section.

Table 17. Code for Pirate in GameFinal

21

Boat

Code Comments
import greenfoot.*;

public class Boat extends Actor

{

 private int x;

 private int y;

 private int a;

 private int b;

 Bomb bomb = new Bomb();

 public void act()

 {

 wrapAround();

 anchorDisappearAppear();

 moveAndTurn();

 fireOnCommand();

 }

 public void anchorDisappearAppear()

 {

 Actor Anchor = getOneObjectAtOffset(0, 0, Anchor.class);

 if(Anchor != null) {

 getWorld().removeObject(Anchor);

 a = Greenfoot.getRandomNumber(599);

 b = Greenfoot.getRandomNumber(399);

 getWorld().addObject(Anchor, a, b);

 }

 }

 public void moveAndTurn()

 {

 if(Greenfoot.isKeyDown("left")) {

 turn(-5);

 }

 move(1);

 if(Greenfoot.isKeyDown("right")) {

 turn(5);

 }

 move(1);

 }

 public void wrapAround()

 {

 x = getX();

 y = getY();

 if (x == 599)

 setLocation(0, y);

 if (y == 399)

Boat will need four variables. x and y will provide

coordinates for the Boat to wrapAround as was done

in the Wrapping an Object section. a and b provide

the coordinates for replacing the anchor at a random

location after it intersects with Boat.

This line creates the variable “bomb” so that a bomb

can be created when the “f” button is pressed.

The act method is kept simple. Only calls are

included in the act method.

anchorDisappearAppear is the only new method.

anchorDisappearAppear simply uses the

disappearAppear method and causes an anchor to

disappear when the boat intersects with it and then

reappear at a random location.

The moveAndTurn method was defined in the Move

and Turn section.

The wrapAround method has been explained in the

Wrapping an Object section.

22

 setLocation(x, 0);

 if (x == 0)

 setLocation(599, y);

 if (y == 0)

 setLocation(x, 399);

 }

 public void fireOnCommand()

 {

 if (Greenfoot.isKeyDown("f"))

 {

 World OceanWorld = getWorld();

 OceanWorld.addObject(bomb, 0, 0);

 bomb.setLocation(getX(), getY());

 bomb.setRotation(getRotation());

 }

 }

}

The fireOnCommand method has been explained in

the Shooter section.

Table 18. Code for Boat in GameFinal

Anchor

Code Comments
import greenfoot.*;

public class Anchor extends Actor

{

 private int g;

 private int h;

 public void act()

 {

 wrapAround();

 move(1);

 }

 public void wrapAround()

 {

 g = getX();

 h = getY();

 if (g == 599)

 setLocation(0, h);

 if (h == 399)

 setLocation(g, 0);

 if (g== 0)

 setLocation(599, h);

 if (h == 0)

 setLocation(g, 399);

 }

}

The only method used by Anchor is wrapAround. We

arbitrarily decided to declare the variables g and h as private,

which means that they can only be accessed from within the

Anchor class.

Table 19. Code for Anchor in GameFinal

Now, compile, correct errors as needed, drag a Boat, several Pirates, and several Anchors into

OceanWorld and play!

23

Conclusion: So, Now What?
At this point you have a simple working game. Greenfoot, however, can create games with

many more sophisticated features than have been displayed here. Here are some additional

resources you might want to consider:

 A good next step is to get the book Introduction to Programming with Greenfoot by

Michael Koellig. Michael Koellig authored the Greenfoot game development

environment and his book will walk you through many additional features and more

advanced games. The book is expensive ($94 on Amazon for the 2
nd

 edition). You might

want to consider a used 1
st
 edition for about $40.

 Download the book-scenarios from www.Greenfoot.org/book. These files are intended

to accompany Introduction to Programming with Greenfoot.

 Oracle Academy (academy.oracle.com) provides an excellent structured program for both

Greenfoot and Java that is free of charge. The Oracle Academy materials are well suited

for a formal course in Java.

 The Greenfoot website (www.Greenfoot.org), from which you downloaded Greenfoot, is

a great user forum and you will learn a lot about Greenfoot over time by reading and

viewing its content.

 YouTube, and mrstewartslessons.com contain a number of instructional Greenfoot

videos.

We hope that you found this booklet helpful in getting started with Greenfoot. We believe that

getting started in the MESA Computer Science Competition should not be any harder for

students and advisors than making a simple glider or bridge. If you would like an online version

of this booklet, just email us at [insert email address here]. The online version can facilitate

distribution to your students. It is also possible to copy the code from the online document

straight into Greenfoot, then compile and run. Good luck! We hope to see your students in next

year’s MESA Computer Science Competition.

http://www.greenfoot.org/book

24

Appendix A: Why learn Java and how does Greenfoot help?
Google the question, “What is the best computer language to learn?” and click on some of the

top responses. Java will appear at or near the top of every list. Java was developed by James

Gosling in 1994 at Sun Microsystems. The language is now owned by Oracle Corporation but

don’t worry, everything needed to become a Java expert is available online for free. So, why is

Java popular? Java was first developed to provide the software for household appliances, which

use a variety of microprocessors. As a result, Java was developed in a way to be able to run the

same program (commonly referred to as “code”) on different processors and different operating

systems. By contrast, when using other languages, different versions of the same program must

be written. The ability to run on different computers became even more important with the

expansion of the internet.

Java is able to run on different systems by converting the Java program into an intermediate code

called bytecode that runs on a piece of software called a Java Virtual Machine (JVM). The JVM

then converts the code into machine language that can be understood by each different processor.

Machine language is a vast series of “0’s” and “1’s” that turn on and off electronic switches

formed by transistors. The disadvantage of this intermediate step is that Java runs slower than

some other languages, such as C++. Still, Java runs fast enough for most any application except

high performance robotics or high speed graphics used in modern video games.

Among the other features of Java that make it popular are that it is relatively easy for new

programmers to learn. It is, however, not just a teaching language but also widely used in

professional applications. Also, Java is “safer” than some other languages. C++, which allows

the programmer to get deeper into the machine, can also allow new programmers to create

problems for themselves. By contrast, Java does not allow such complex access. Java also

contains abundant libraries of predefined routines (called API) that programmers can access so

they do not need to write all of their code from scratch. In sum, while learning Java will present

challenges, it is an excellent first language for a new programmer.

Greenfoot is a special software package designed to introduce new student-programmers to Java

programming. Greenfoot was written by Michael Koellig at the University of Kent in England

and is endorsed by Oracle Corporation as a teaching tool for Java. Greenfoot is an environment

designed to allow users to easily create video games. In addition to the video game development

environment, Greenfoot contains specialized commands that aid in the development of a game.

Examples of these are “turn” which causes the game object to turn, or “getLocation” which

returns the x and y coordinates of the object’s location.

The most valuable characteristic in teaching Java is that Greenfoot requires the student-

programmer to create the game as a collection of “objects” that interact with one another. This

process familiarizes students with the concept of Object Oriented Programming; an essential

25

structure in Java, C++, and several other programming languages. In addition, the student-

programmer creates the code for the game in Java thereby learning the structure and syntax of

Java. Students become familiar with the use of semicolons, braces, and conditional statements

such as “if-else.”

Appendix B: Setting Up Greenfoot
Setting up Greenfoot involves two easy steps. Both downloads are free of charge.

1. Download Greenfoot. Go to www.greenfoot.org/download and download the appropriate

version of Greenfoot

2. In addition, you must download a Java compiler. The latest version is the Java

Development Kit 8 (JDK8). Go to the Oracle downloads page:

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-

2133151.html . Most modern computers are 64 bit and will use the Windows x64 or Mac

OS X x64 versions.

Appendix C: Dealing with Errors
Your first effort at writing code will be a little frustrating. The error messages might not always

be clear and, sometimes, they might even give you an explanation that is inaccurate. For

example, you might receive an error that says “; expected” meaning that the compiler was

expecting you to have placed a semicolon in the identified location. In fact, the problem might

be that your braces don’t match up properly. The reason is that the compiler can’t always know

what the programmer intended and, therefore, diagnoses the error incorrectly.

Most of your errors will occur for one of the following reasons:

1. Misspelled words

2. Improper capitalization of words

3. Mismatching braces or braces turned the wrong way (called a “parsing” error)

4. Omitting semicolons (;)

5. Not declaring variables

The more code you type, the better you will become at avoiding errors. For this reason, it is

strongly recommended that you type all of your code rather than copying and pasting.

http://www.greenfoot.org/download
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

26

If you compile

and see a

highlighted

yellow line on

your code and an

error on the

bottom, such as in

the image in

Figure 9, you will

need to correct

your code. A

small red mark

identifies the

exact location of

the error. In this

case, a parentheses was omitted and must be added on the highlighted line. If you compile from

the main screen and there is an error, you will see a Greenfoot icon flashing on your task bar (at

the bottom of your screen) prompting you to enter the code editor.

If you use the code editor and see the message “Class compiled-no syntax errors” you’re good

to go. If you compile from the main screen and there are no errors then you will see your world

appear ready for you to enter actors and run.

Appendix D: How Do I Know What Methods Are Available To Use?
If you go to the “Help” pulldown on the upper left side of the main Greenfoot screen you will

see an option “Greenfoot Class Documentation.” When you click the link you will see a table

titled “Class Summary” with seven classes listed below. At this point, you are primarily

interested in the World, Actor, and Greenfoot classes. If you click on Actor and scroll down

you will see all of the methods that have been predefined in Greenfoot to be used by Actor. You

will also see the return type (void, int, etc.) as well as the arguments (inputs) required for the

method. These methods are also inherited by any subclasses of actor such as Boat. You will

notice that you don’t see the method “isKeyDown,” which was used in the MoveAndTurn folder.

If you click into the Greenfoot class over on the left panel and scroll down you will see this

method. Because isKeyDown belongs to the Greenfoot class, any actor wishing to use this

method must include the word Greenfoot before isKeyDown.

 Another way you can access the methods available is from the code editor. Open the code

editor for the Boat, place the cursor anywhere inside of the editor, then press <Control-Space

bar> at the same time; a menu of methods available to the class will appear. You can learn to

use various methods by reading the documentation and by experimenting with each of them.

Figure 9. How an error appears in the code editor

